

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

JOINT APPLIED PROJECT

Software Independent Verification
& Validation (SIV&V) Simplified

By: Reffela Davidson,

 Ashley Mathis,
 David Patterson, and
 Alexis P. von Spakovsky

December 2006

Advisors: Bill Craig
 Brad Naegle

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Joint Applied Project

4. TITLE AND SUBTITLE: Software Independent Verification and Validation
(SIV&V) Simplified

6. AUTHOR(S) Reffela Davidson, Ashley Mathis, David Patterson, Alexis von
Spakovsky

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author(s) and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT

SIV&V has been in existence for some 40 years, and many people still know little about its existence.
Software IV&V certifies the quality of the software and independently validates and verifies that it meets
or exceeds the customer’s expectations. Independent V&V for component or element software
development activities encompasses the following: 1) review and thorough evaluations of the software
development, 2) review and comment on software documentation, 3) participation in all software
requirements and design reviews, and 4) participation in software integration and testing for each
software build. This thesis will explore and explain the benefits and rationale for Software Independent
Verification and Validation. It will identify SIV&V processes that are used to support acquisition weapon
systems. “SIV&V Simplified” will translate, into understandable terms, why SIV&V is considered “Cheap
Insurance” and why it is needed. Additionally, this thesis serves as a tutorial, providing suggested
policy and guidance, suggested software Computer-Aided Software Engineering (CASE) tools, criteria,
and lessons learned for implementing a successful SIV&V program.

15. NUMBER OF
PAGES

115

14. SUBJECT TERMS Software, Independent, Verification, Validation, Policy, Guidance,
SIV&V, Computer Aided Software Engineering, CASE tools, Acquisition, Documentation,
Test and Evaluation, Development, Requirements, Design Reviews, Integration, Benefits,
Processes, Weapons Systems, Cheap Insurance, Criteria, Lessons Learned

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 Rev. 2-89) Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SOFTWARE INDEPENDENT VERIFICATION AND VALIDATION (SIV&V)
SIMPLIFIED

Reffela Davidson, GS-12, United States Army IMMC, GMD

Ashley Mathis, NH-IV, Missile Defense Agency, THAAD
David Patterson, NH-III, United States Army Aviation, Space and Missiles

Alexis P. von Spakovsky, NH-IV, Missile Defense Agency, GMD

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PROGRAM MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Authors: _____________________________________

Reffela Davidson

Ashley Mathis

David Patterson

Alexis P. von Spakovsky

Approved by: _____________________________________

Dr. Bill Craig, Lead Advisor

 LTC (ret) Brad Naegle, Support Advisor

 Robert N. Beck, Dean

Graduate School of Business and Public Policy

 iv

THIS PAGE INTENTINALLY LEFT BLANK

 v

SOFTWARE INDEPENDENT VERIFICATION AND
VALIDATION (SIV&V) SIMPLIFIED

ABSTRACT

Software Independent Verification and Validation (SIV&V) has been in

existence for some 40 years, and many people still know little about its existence.

Software IV&V certifies the quality of the software and independently validates

and verifies that it meets or exceeds the customer’s requirements and

expectations. Independent V&V for component or element software

development activities encompasses the following: 1) review and thorough

evaluations of the software development, 2) review and comment on software

documentation, 3) participation in all software requirements and design reviews,

and 4) participation in software integration and testing for each software build.

This thesis will explore and explain the benefits and rationale for Software

Independent Verification and Validation. It will identify SIV&V processes that are

used to support acquisition weapon systems. “SIV&V Simplified” will translate,

into understandable terms, why SIV&V is considered “Cheap Insurance” and why

it is needed. Additionally, this thesis serves as a tutorial, providing suggested

policy and guidance, suggested software Computer-Aided Software Engineering

(CASE) tools, criteria, and lessons learned for implementing a successful SIV&V

program.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PURPOSE.. 1
B. BACKGROUND ... 1
C. RESEARCH QUESTIONS ... 2

1. Primary Research Question.. 2
2. Secondary Research Questions... 2

D. SCOPE OF THESIS ... 2
E. METHODOLOGY... 2

1. Data Collection Methodology ... 2
2. Data Analysis Methodology.. 3
3. Conclusions and Recommendations Methodology.............. 3

F. ORGANIZATION.. 3
G. BENEFITS OF STUDY... 4

II. THE SIV&V BACKGROUND .. 5
A. INTRODUCTION.. 5
B. KEY DEFINITIONS .. 5
C. SIV&V BACKGROUND ... 6

1. Historical .. 6
2. SIV&V Policy/Guidance ... 10
3. The Role of SIV&V ... 13
4. SIV&V Challenges.. 14

III. THE SIV&V GUIDE... 17
A. SIV&V SIZING AND TYPES .. 17

1. Introduction.. 17
2. Survey of SIV&V Metrics ... 17
3. SIV&V Staffing Levels ... 19

B. THE BENEFITS OF SIV&V.. 21
1. Introduction.. 21
2. Costs Associated with Discovered Errors........................... 22
3. Return On Investment (ROI).. 25

a. Average Source Line of Code (SLOC)
Development Cost... 27

b. Analysis of SIV&V Software Trouble Reports
Corrected and Implemented by the Developer......... 27

c. Multipliers for Relative Cost to Correct Defects....... 28
d. Return On Investment Calculation 31
e. Development Schedule Reduction 33
f. More Measurable Results of SIV&V........................... 34
g. Examples With and Without SIV&V 37
h. DoD SIV&V Examples: .. 39
i. Commercial Examples: No SIV&V Agent Utilized ... 40

 viii

C. APPLYING SIV&V IN THE CYCLE PHASE 41
1. Introduction.. 41
2. Concept Definition Phase ... 42
3. Requirements Phase ... 45
4. Design Phase ... 48

a. Architecture Design.. 49
b. Detailed Design ... 51

5. Code and Development Testing Phase................................ 54
6. Hardware and Software Integration Phase.......................... 56
7. Formal Qualification Phase... 59
8. Operational Readiness Phase .. 61
9. Operations and Maintenance Phase 63

D. SIV&V SUPPORTING CASE TOOLS.. 64
1. Introduction (I-Logix.com; Telelogics; Spector; Rational;

Zambrana) .. 64
2. Requirements... 66
3. Design... 66
4. Code.. 66
5. Tracking Database... 67
6. Rate Monotonic Analysis (RMA)... 67
7. Security Assessment (Klocwork; Ghosh; Gilliam;

Laliberte)... 68
E. IMPACTS OF ACQUISITION REFORM .. 69
F. KEYS TO SUCCESSFUL SIV&V... 71

IV. SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS 77
A. SUMMARY... 77
B. CONCLUSIONS... 77
C. RECOMMENDATIONS.. 78
D. ANSWERS TO RESEARCH QUESTIONS .. 80

1. Primary Research Question.. 80
2. Secondary Research Questions... 80

E. RECOMMENDATIONS FOR FURTHER STUDY 83

APPENDIX: INTEGRATED SYSTEM DIAGRAM (ISD) ... 85

LIST OF REFERENCES.. 87

INITIAL DISTRIBUTION LIST ... 93

 ix

LIST OF FIGURES

Figure 1. Technical Support And Program Size (Missile Defense Agency 15) .. 21
Figure 2. Cost To Fix Defect Versus Life Cycle Phase (Boehm 1981 40) 23
Figure 3. Average Cost of Discovering Errors (Lewis 1992 279) 31
Figure 4. Ariane 5 Crash (Knutson; Missile Defense Agency 24) 37
Figure 5. NASA SIV&V Policy (Missile Defense Agency 23) 38
Figure 6. THAAD Electronics Box (U.S. Army 28) ... 40
Figure 7. Notional SIV&V Activities (Walters) .. 42
Figure 8. SIV&V Battle Rhythm Concept Development Phase (Lewis 1998) 45
Figure 9. SIV&V Battle Rhythm Requirements Phase (Lewis 1998).................. 48
Figure 10. SIV&V Battle Rhythm Architectural Design Phase (Lewis 1998)........ 51
Figure 11. SIV&V Battle Rhythm Detailed Design Phase (Lewis 1998)............... 53
Figure 12. SIV&V Battle Rhythm Code and Development Testing Phase

(Lewis 1998)... 56
Figure 13. SIV&V Battle Rhythm Hardware and Software Integration Phase

(Lewis 1998)... 58
Figure 14. SIV&V Battle Rhythm Formal Qualification Phase (Lewis 1998) 61
Figure 15. SIV&V Battle Rhythm Operational Readiness Phase (Lewis 1998) ... 62
Figure 16. SIV&V Battle Rhythm Operations and Maintenance Phase (Lewis

1998) .. 64

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Major Commercial Software Failures (Department of Air Force 2-7) 9
Table 2. SIV&V Policy And Guidance... 10
Table 3. SIV&V Metrics .. 18
Table 4. System B .. 28
Table 5. System D.. 28
Table 6. Study Multipliers ... 29
Table 7. Recommended SIV&V Tool Suite .. 69

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACRONYMS AND ABBREVIATIONS

AAMI Association for the Advancement of Medical Instrumentation

ADR Architectural Design Review

AF Air Force

AFI Air Force Instruction

AFLCP Air Force Logistics Command Pamphlet

AFSC Air Force Systems Command

AFSMC Air Force Space and Missile Systems Center

AMC Army Material Command

AMRDEC Aviation and Missile Research Development and

 Engineering Center

ANS American Nuclear Society

ANSI American National Standards Institute

AT&T American Telephone and Telegraph

CASE Computer-Aided Software Engineering

CDR Critical Design Review

CM Carnegie Mellon

CM Configuration Management

CMM Capability Maturity Model

COBOL Common Business Oriented Language

COTS Commercial-Off-The-Shelf

COU Concept of Operations and Utilization

CR Contractor Report

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DAU Defense Acquisition University

DBDD Database Design Document

DDR Detailed Design Review

 xiv

Dem/Val Demonstration/Validation

DoD Department of Defense

DT&E Developmental Test and Evaluation

ECP Engineering Change Proposal

ESD Electronic Systems Division

FAA Federal Aviation Administration

FCA Functional Configuration Audit

FEU Functional Equivalent Unit

FHWA Federal Highway Administration

FIPS Federal Information Processing Standard

FMEA Failure Mode Effects Analysis

FORTRAN Formula Translator

FQT Formal Qualification Test

FRR Flight Readiness Review

FUE Field Unit Equipped

GB Guidebook

GMD Ground-Based Midcourse Defense

GOTS Government-Off-The-Shelf

GSAM General Service Administration Acquisition Manual

GTE General Telephone and Electronics

GUI Graphical User Interfaces

HSI Hardware and Software Integration

HSI Human Systems Integration

HTP Hardware Test Plan

HWCI Hardware Configuration Item

I/O Input/Output

I2V2 Independent Integrated Verification and Validation

IBM International Business Machines

ICD Interface Control Document

IDD Interface Design Document

 xv

IEEE Institute for Electrical and Electronic Engineers

IOC Initial Operational Capability

IPT Integrated Product Team

IRS Interface Requirements Specification

ISD Integrated System Diagram

ITD Integrated Test Description

ITP Integrated Test Plan

ITT International Telegraph and Telephone

KSLOC Thousand Source Line of Code

LOE Level of Effort

MOE Measure of Effectiveness

MOP Measure of Performance

MTT Methods, Tools, and Techniques

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NBS National Bureau of Standards

NIST National Institute of Standards and Technology

NIST National Institute of Standards and Technology

NPD NASA Policy Directive

NSWCDD Naval Surface Warfare Center - Dahlgren Division

NUREG Nuclear Regulatory Commission

O&M Operation and Maintenance

OCD Operational Concept Document

OIG Office of Inspector General

ORD Operational Requirements Document

ORR Operational Readiness Review

OT&E Operational Test and Evaluation

P3I Pre-Planned Product Improvement

PAM Pamphlet

PCA Physical Configuration Audit

 xvi

PD Program Director

PDR Preliminary Design Review

PDSS Post-Deployment Software Support

PIDS Prime Item Development Specification

PM Program Manager

PMO Project Management Office

PO Program or Project Office

POC Point of Contact

RAM Reliability, Availability, Maintainability

RDECOM Research Development and Engineering Command

RMA Rate Monotonic Analysis

ROI Return on Investment

SAT Security Assessment Tool

SCR Software Change Requests

SDD Software Design Document

SDF Software Development Folder

SDO Software Development Organization

SDP Software Development Plan

SDR Systems Design Review

SED Software Engineering Directorate

SEE Software Engineering Environment

SEES Software Engineering Evaluation System

SEI Software Engineering Institute

SI Software Item

SIV&V Software Independent Verification & Validation

SLOC Source Line of Code

SLP System Level Procedure

SME Subject Matter Expert

SOW Scope of Work

SOW Statement of Work

 xvii

SPR Software Problem Report

SPS Software Product Specification

SRR System Requirements Review

SRS Software Requirements Specification

SS System Specification

SSDD System Segment Design Document

SSR Software Specification Review

STD Software Test Description

STD Standard

STP Software Test Plan

STR Software Trouble Reports

SU Software Unit

SW Software

TEMP Test and Evaluation Master Plan

THAAD Theater High Altitude Area Defense

TRD Technical Requirements Document

TRR Test Readiness Review

TRW Thompson Ramo Wooldridge

UML Unified Modeling Language

US United States

USS United States Ship

V&V Verified and Validated

WBS Work Breakdown Structure

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGEMENTS

 The authors would like to thank our thesis advisors, Dr. Bill Craig and LTC

(ret) Brad Naegle. Their support, time, and advice helped guide the authors and

make this project less of an ordeal, given our demanding school, work, and

personal lives. Additionally, we would like to thank the U.S. Army’s Acquisition

Education Training and Experience Board for giving us this opportunity to further

our educations and careers. And to the faculty and staff of the Naval

Postgraduate School, thank you for your dedication to teaching us and helping us

expand our horizons. Finally, we would like to thank our families, our bosses,

and our co-workers for their endless patience and understanding as we struggled

to balance our responsibilities between home, work, and school. Without their

support, none of our efforts over the last two years would have been successful.

 I (Alexis von Spakovsky) would like to personally thank my co-workers

Alan Bollers and Hap Terrell for encouraging me to apply for this graduate

program and providing me constructive edits for my application package; my

bosses James Johnson, Tom Lancaster, and Gina Gilbertson for allowing me the

time I needed to go back to school; my co-workers, Wayne Gardner, Mark

Douglas, Don Smith, Kim Miller, Allan Bollers, and Rick Wegman for taking up

the slack at work; and most especially my wife Ida and my children, Victor, Leos,

Emilia, and Josef, for sacrificing fun time and vacations, and at times putting up

with their extremely tired and grumpy father. Thank you!!!

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE
The purpose of this thesis is to explain the benefits and rationale of

Software Independent Verification and Validation (SIV&V) to Program

Management Offices (PMO) and others. Additionally, this thesis serves as a

tutorial, providing policy and guidance documentation, as well as, suggested

software Computer-Aided Software Engineering (CASE) tools, criteria, and

lessons learned to implement a successful SIV&V program.

B. BACKGROUND
The costliest, most complex and critical component of almost every

weapons system employed by the Armed Forces of the United States is the

software. The software is that key component of a weapon system that allows it

to perform its functions. For the war-fighters to be able to successfully carry out

their missions, the software must be able to perform in its operational

environment(s) per requirements. Failure to do so can lead to mission failure

and catastrophic consequences for the war-fighters and their equipment. An

excellent quote that illustrates this point was made by LTG Robert H. Ludwig,

and simply states the “Fly-by-Wire F16C … without software,” is nothing more

than “… a 15-million dollar lawn dart!” (Department of Air Force 1-14).

When the National Security of the United States and the lives of its men

and women in uniform are at stake, this country, especially members of the

Defense community, must strive to provide the very best engineered software

products that money and a disciplined engineering process can produce. SIV&V

becomes a critical tool in verifying and validating highly complex software that

helps assure the war-fighters’ weapon systems will be operational and perform

as required when they are needed most.

2

C. RESEARCH QUESTIONS
1. Primary Research Question
What are the benefits of and rationale for PMOs and others for using

SIV&V?

2. Secondary Research Questions
What software CASE tools are available for software V&V?

What key things should be done or considered when conducting SIV&V?

What are the SIV&V process steps?

How has acquisition reform affected SIV&V?

What lessons have been learned from past programs that have utilized

SIV&V?

D. SCOPE OF THESIS
This thesis serves as a tutorial on SIV&V for the Program Manager and

others engaged in the acquisition of systems for the United States Armed Forces.

As such its scope is limited to providing a brief history of SIV&V, highlighting

some policy and guidance documentation, discussing acquisition reform, SIV&Vs

importance to the overall success of producing systems that are both

operationally effective and suitable, and providing an understandable practical

methodology for conducting SIV&V. Several real world examples are used to

convey the benefits of employing SIV&V, the pitfalls of not using SIV&V, and

providing lessons learned that can benefit programs that apply this methodology.

E. METHODOLOGY
1. Data Collection Methodology
The data collection methodology for this thesis consisted of extensive

research of available SIV&V materials from books, the internet and online library

sources, government and other policies, regulations, standards and handbooks.

Additionally, the more than 11 years of SIV&V experience of one of the authors,

Mr. Ashley Mathis, was instrumental in bringing this information together in an

understandable, concise and practical form.

3

2. Data Analysis Methodology
All of the data was analyzed from the perspective of real world experience

with SIV&V. The data analysis was conducted to determine what did and did not

work, how to apply or not to apply the method, why to apply the method, and

when to apply the method. A critical eye was applied to looking for practical,

straightforward ways in which to apply SIV&V methods and lessons learned that

could be easily understood and applied to any acquisition program.

3. Conclusions and Recommendations Methodology
This thesis will aid PMOs in making informed decisions when faced with

political and budgetary realities. Thus, the conclusions and recommendations of

this thesis stemmed from a careful analysis of the data through the prism of real

world experiences. The objective was to provide a clear understanding of the

need for and the benefits of a properly applied SIV&V methodology. Armed with

this information, PMOs will have understanding of a powerful tool that is critical to

the successful acquisition of today’s complex software centric systems.

F. ORGANIZATION
This thesis consists of four chapters.

Chapter I – Introduction - This chapter establishes the purpose,

background, the research questions, the scope, the methodology, organization,

and benefits of this thesis.

Chapter II – SIV&V Background - This chapter introduces the material,

providing a description, definitions, and a history of SIV&V’s evolution in

conjunction with the technological progress of computers and software. Also

addressed are some guidelines and policies, the role, and the future challenges

facing SIV&V.

Chapter III – The SIV&V Guide - This chapter addresses sizing and types

of SIV&V agents, metrics, and staffing levels. Additionally, the benefits of SIV&V

are addressed, using real world examples to illustrate the differences between

programs that used SIV&V and ones that did not. Finally, the chapter discusses

how to apply SIV&V throughout the life cycle of a program, the CASE tools that

4

can be used to manage the effort, the impacts of acquisition reform, and key

strategies for conducting SIV&V successfully.

Chapter IV – Summary, Recommendations, and Conclusions - This

chapter summarizes the answers to the research questions from chapter I, and

recommends an area for further study.

Appendix – The appendix provides a chart showing the Integrated

Systems Diagram process that the Software Engineering Directorate uses. This

is followed by the List of References.

G. BENEFITS OF STUDY
This study will benefit PMOs and others who are acquiring systems in

support of the American men and women in uniform. The PMOs will gain an

advantage by having a better understanding of the benefits of utilizing an

effectively tailored SIV&V process that will allow them to produce highly reliable

software while reducing the life cycle costs of their programs. Further, the PMOs

will have a better understanding of the process steps, methodologies, and tools

that are critical to successfully applying SIV&V to their programs. Finally, PMOs

will have a readily available reference that specifies various SIV&V policies and

guidelines and where they can be found. Ultimately, it is the warfighter who will

reap the greatest benefits through fielding of highly reliable systems that are

operationally effective and suitable.

5

II. THE SIV&V BACKGROUND

A. INTRODUCTION
“Modern aerospace and defense systems incorporate increasingly

sophisticated information processing and control systems” (Department of Air

Force U-3). Given the ever increasing complexity of these systems, policy

makers recognizing the necessity for and the benefits of SIV&V, have instituted

policies, regulations, and guidance making SIV&V an integral part of modern

systems acquisition. One such regulation is Department of Defense (DoD)

Directive 5000.1, which identifies Software Independent Verification and

Validation (SIV&V) as providing the Program or Project Office (PO) with an

independent assessment of the software. Thus, it becomes the responsibility of

the SIV&V agent to ensure systems operate and continue to demonstrate a high-

level of reliability throughout their life cycles. This document is a synopsis of the

overarching processes and justification for the SIV&V effort, and is used as the

top-level guideline for all SIV&V activities. The SIV&V Background section will

discuss the nature and rationale for the SIV&V environment.
B. KEY DEFINITIONS

Independent: The use of a team that is separate from the development

and development management/oversight teams to perform V&V.

Software Verification: “Are we building the right thing right?” -

Confirmation by examination and provision of objective evidence that specified

requirements fulfill the output of a particular phase of development and meet all

the input requirements for that phase.

• Verifies software architecture design based upon software

requirements, Software Development Plan (SDP), and the Software

Design Document (SDD)

• Analyzes interfaces, data flow, exception handling, timing budgets,

memory allocations

• Compares code to design and development requirements

6

Software Validation: “Are we building the right thing?” - Establish

objective evidence that all software requirements are correctly implemented,

complete and are traceable to system requirements. Software validation is a

design verification function and includes all of the verification and testing

activities conducted throughout the software life cycle.

• Ensures that all software requirements are qualified (certified) through

analysis, inspection, demonstration, or test

• SIV&V assesses software capability to meet specified design and

performance requirements

Software Independent Verification and Validation (SIV&V): An

independent risk reduction processes applied to operational software to ensure

the prepared code is properly built to specifications and adequately tested for

deployment in a delivered operational system.

C. SIV&V BACKGROUND
1. Historical
To truly appreciate and comprehend how and why SIV&V developed, and

the critical part that it plays in the development of today’s complex systems, a

brief review of the history of computers and software development is needed.

The first electronic computer was developed in the 1940s (Rombach 52).

These early computers did not separate the hardware from the software, as they

were built to perform one task or solve one problem, and thus were switched or

hard-wired to perform certain tasks (Robat 5-7). By the 1950s, computers had

progressed to single-user operating systems, supported high-level programming

languages such as COBOL (Common Business Oriented Language) (Codasyl

committee 1960), and FORTRAN (FORmula TRANslator) (IBM 1952) (Robat 11),

and multiple computer applications (Rombach 52). In the 1960s computers

became more powerful, supported multi-user operating systems, a variety of

more intricate applications, and were used extensively to solve ever more

complex problems (Rombach 52). By 1968, computers and software had

evolved to a level of complexity where the term “The Software Crisis” was

7

applied for the first time at a NATO conference in Garmisch –Partenkirchen

(Rombach 53), to describe the growing problem with software quality and

reliability. The ensuing decades of the 70s, 80s, and 90s have only added to the

problem. As computers have become more capable and the software more

complex, engineers have utilized these technical advances to solve ever more

sophisticated and intricate problems. As a result, we have seen software grow

from a relatively small contribution to system development cost of 20% in the

1950s, to 80% of system cost in the 1980s, to nearly 95%-100% of system cost

today (Reiss 397-398). This change in cost between hardware and software can

be explained as follows. The cost of the hardware for the large, early computers

was very expensive; typically, very few were built, and those that were occupied

the space of several rooms. As a result of technological advances and the

utilization of mass production techniques, computer hardware became not only

more capable and smaller, but also much cheaper. Further, in the past, large

software programs consisted of thousands of lines of code. In contrast, today’s

systems consist of millions of lines of code. Software engineers have found that

as lines of code increased arithmetically, the cost and complexity of the software

tended to increase exponentially. New methodologies and techniques were

required to develop and manage the ever-increasing size of these software

systems (Reiss 397-398).

From its infancy in the 1940s to today, “…software development has

evolved from small tasks involving a few people to enormously large tasks

involving many people” (Tran 1-2). Similarly V&V has changed from an

“…informal process performed by the software engineer himself…” to a “…highly

formalized…” “…separate activity…” conducted by “…organizations independent

of the software developer…” and “…practiced over the entire software life cycle”

(Tran 1-2).

Given the historical context of computing and software, it is not surprising

that V&V and IV&V of software developed at a much later date, not because it

was planned, but rather as a necessity for dealing with increasing software

8

complexity and the resulting lack of quality and reliability. In the earliest days of

computers and software, there was a significant “…lack of discipline in the

software development process ...” (Persons 5-7). This early “V&V” process, if

you could call it such, was nothing more than the programmer debugging their

code (Shridhar 2-3). As software began to mature in the late 1950s, the U.S.

Department of Defense (DoD) began to notice that as their systems started

incorporating more software, three issues kept making repeat appearances,

namely, budget overruns, schedule delays, and technical problems (Food For

Thought 1-2). These recurring issues necessitated that a more formal method of

developing and managing software be established. One of the very first uses of

V&V was in the DoD on “…the Atlas Missile Program in the late 1950s” (Food

For Thought 1-2).

In 1962, the Air Force learned an expensive lesson with the loss of an

Atlas booster and its Mariner payload because of a simple software error

(Shridhar 2-3). This failure resulted in the Air Force mandating that all future

mission critical software would require independent verification (Shridhar 2-3). It

was this requirement that served as the catalyst for what we know today as IV&V

(Shridhar 2-3).

In the 1970s, as software began to migrate to the commercial sector,

many of these software companies began to experience the same issues that

had plagued government programs a decade earlier (Food for Thought 2-3). It

was during this same time frame that “… the U.S. Army sponsored the first

significant such IV&V program for the Safeguard Anti-Ballistic Missile System.

This program pushed IV&V from a fledgling stage to being a mature systems and

software engineering discipline…. It was from this effort that IV&V became well

known within the Department of Defense and aerospace communities as an

accepted method of ensuring better quality, performance, and reliability of critical

systems…. By the mid- to late 1970s, IV&V was rapidly becoming popular and in

9

some cases was required by the military services, especially for systems that has

a high cost of failure and hence were able to justify the small added cost of IV&V”

(Lewis 1992 xxiii).

Even as the Defense and Aerospace communities were embracing an

evolving SIV&V as a viable methodology for handling software quality and

reliability, their counterparts in the commercial sector continued to experience

quality, budget, schedule, and technical problems on an alarming scale as late as

the 1980s and 1990s (Food for Thought 2-3). Table 1 (Department of Air Force

2-7) shows some examples of major commercial software failures.

Table 1. Major Commercial Software Failures (Department of Air Force 2-7)

YEAR PROJECT RESULTS

1980s International Telegraph & Telephone
(ITT) – 4 Switching Systems

40,000 Function Point System,
$500M Lost, Cancelled

1987 California Department of Motor
Vehicles, Automated Vehicle/Drivers
License System

3 (5,000 Function Point Size)
Switches, $30M Lost,
Cancelled

1989 State of Washington – Automated
Social Services Caseworker System

7 Years to Build, Failed to
Meet User Needs, $20M Lost,
Cancelled

1992 American Airlines – Flight Booking
System

$165M Lost, Cancelled

Over the past 60 years, we have witnessed the birth, growth, and

development of computers and software. As the technology matured, and

became intertwined throughout our modern infrastructure, its very complexity

required the software engineering discipline and its process to grow and mature

10

in an effort to control and manage this software. A natural outgrowth of this

evolution was the need for SIV&V; a mindset, processes, and a set of tools

developed to provide software engineers and PMs the capability to consistently

produce reliable, quality software.

The authors expect that computers and software technology will continue

to progress and mature, becoming ever more complex and sophisticated. The

future successes of software programs will become ever more dependent on the

SIV&V process, and as such, will continue to force the evolutionary advancement

of SIV&V so that it remains a viable and effective methodology in the never-

ending battle to tame and manage the expanding complex nature of software.

2. SIV&V Policy/Guidance
Many agencies both government and commercial have devised policies,

regulations, and standards that address SIV&V. Table 2, listing policies and

guidelines, is not all-inclusive but serves as a handy reference that can assist

and guide the reader in implementing SIV&V within their own projects and

organizations.

Table 2. SIV&V Policy And Guidance

(Table continues on following pages)
Policy/Regulation/Standard/

Other
Agency Website/Comments

AFSC/AFLCP 800-5 “Software
Independent Verification and

Validation”

US Department of
the Air Force (AF)

http://segoldmine.ppi-
int.com/menu_guides.htm

AFSMC Regulation 800-26
“Independent Verification and

Validation”

US Department of
the Air Force,

Space and Missile
Systems Center

(AFMC)

http://www.fas.org/spp/military/docop
s/smc/ivv26.htm

AFI 16-1001 “Verification,
Validation, and Accreditation”

US Department of
the Air Force

http://www.e-
publishing.af.mil/pubfiles/af/16/afi16-
1001/afi16-1001.pdf

ESD-TR-326 “Software
Acquisition Management

Guidebook: Validation and
Certification”

US Department of
the Air Force,

Electronic Systems
Division,

Hanscomb AFB

http://stinet.dtic.mil/oai/oai?&verb=get
Record&metadataPrefix=html&identifi
er=ADA053039

11

IEEE 1012-2004 “IEEE Standard
for Software Verification and

Validation”

Institute for
Electrical and

Electronics
Engineers

http://www.ieee.org/web/standards/ho
me/index.html

ANSI/IEEE 1074-2006 “IEEE
Standard for Developing a
Software Project Life Cycle

Process”

American National
Standards

Institute/Institute for
Electrical and

Electronics
Engineers

http://www.ieee.org/web/standards/ho
me/index.html
http://webstore.ansi.org/ansidocstore/
product.asp?sku=1074%2D1997

IEEE 1059-1993 “IEEE Guide for
Software Verification and

Validation Plans”

Institute for
Electrical and

Electronics
Engineers

http://www.ieee.org/web/standards/ho
me/index.html

NPD 8730.4 NASA Policy
Directive

National
Aeronautics and

Space
Administration

www.ivv.nasa.gov/foremployees/polic
yplans.php
Established NASA Policy for
Independent Verification and
Validation. Replaced by 2820.1C.

NPD 2820.1C NASA Policy
Directive

National
Aeronautics and

Space
Administration

www.ivv.nasa.gov/foremployees/polic
yplans.php
NASA Independent Verification and
Validation Policy

“Independent Verification and
Validation Implementation Plan

2003-2008”

National
Aeronautics and

Space
Administration

www.ivv.nasa.gov/foremployees/polic
yplans.php

“Independent Verification and
Validation Implementation Plan

2005-2010”

National
Aeronautics and

Space
Administration

www.ivv.nasa.gov/foremployees/polic
yplans.php

NASA OIG IG-03-011
“Independent Verification and

Validation of Software”

National
Aeronautics and

Space
Administration

http://oig.nasa.gov/audits/reports/FY0
3/pdfs/ig-03-011.pdf
NASA Office of Inspector General
Audit Report

NASA-STD-8739.8 “Software
Assurance Standard”

National
Aeronautics and

Space
Administration

http://www.hq.nasa.gov/office/codeq/
doctree/87398.pdf

NASA-STD-8719.13A “Software
Safety”

National
Aeronautics and

Space
Administration

http://satc.gsfc.nasa.gov/assure/nss8
719_13.html

“Program Plan for the NASA
Software Independent

Verification and Validation
Program” Rev 1 May 04

National
Aeronautics and

Space
Administration

www.ivv.nasa.gov/foremployees/polic
yplans.php

12

NASA-GB-002-95 “Formal
Methods Specification and
Verification Guidebook for
Software and Computer

Systems”

National
Aeronautics and

Space
Administration

http://www.fing.edu.uy/inco/grupos/mf
/TPPSF/Bibliografia/fmguide1.pdf

ANSI/ANS 10.4-1987;R1998
“Guidelines for the Verification
and Validation of Scientific and

Engineering Computer Programs
for the Nuclear Industry”

American National
Standards Institute/
American Nuclear

Society

http://www.ans.org/store/vi-240150

BSR/AAMI SW76-
200x “Software Verification and
Validation for High-risk Medical

Devices”

Association for the
Advancement of

Medical
Instrumentation

http://www.nssn.org/search/DetailRes
ults.aspx?docid=41766&selnode

FHWA Handbook V1.2
“Verification, Validation, and

Evaluation of Expert Systems:
An FHWA Handbook”

Federal Highway
Administration

http://www.tfhrc.gov/advanc/vve/cove
r.htm
http://www.tfhrc.gov/advanc/vve/toc.h
tm

FIPSPUB 101 “Guideline for Life
Cycle Validation, Verification,

and Testing of Computer
Software”

US Department of
Commerce,

National Bureau of
Standards

Federal Information Processing
Standards (FIPS)
http://www.itl.nist.gov/fipspubs/withdr
aw.htm
Withdrawn and replaced by industry
standards. Can still be bought from
http://www.nssn.org/search/DetailRes
ults.aspx?docid=263282&selnode

FIPSPUB 132 “Guideline for
Software Verification and

Validation Plans”

US Department of
Commerce,

National Bureau of
Standards

Federal Information Processing
Standards (FIPS)
http://www.itl.nist.gov/fipspubs/withdr
aw.htm
Withdrawn and replaced by industry
standards (IEEE 1012).

NBS Special Publication 500-93
“Software Validation,

Verification, and Testing
Technique and Tool Reference

Guide”

US Department of
Commerce,

National Bureau of
Standards

http://library.nist.gov/uhtbin/cgisirsi/V
weuQgyAsh/NIST/117380059/123

NIST Special Publication 500-
234 “Reference Information for
the Software Verification and

Validation Process”

US Department of
Commerce,

National Institute of
Standards and

Technology

http://hissa.nist.gov/HHRFdata/Artifac
ts/ITLdoc/234/val-proc.html

NIST Special Publication 500-
165 “Software Verification and

Validation: Its Role in Computer
Assurance and Its Relationship

with Software Project
Management Standards”

US Department of
Commerce,

National Institute of
Standards and

Technology

http://library.nist.gov/uhtbin/cgisirsi/V
weuQgyAsh/NIST/117380059/123

13

NIST Special Publication 500-
223 “A Framework for the

Development and Assurance of
High Integrity Software”

US Department of
Commerce,

National Institute of
Standards and

Technology

http://hissa.nist.gov/publications/sp22
3/

NUREG/CR-6316 Volumes 1-8
“Guidelines for the Verification

and Validation of Expert System
Software and Conventional

Software”

US Nuclear
Regulatory

Commission

http://www.osti.gov/energycitations/se
archresults.jsp?Author=Mirsky,+S.M.
This report is an excellent source of
information.

PAM 5-11 Verification,
Validation, and Accreditation of
Army Models and Simulations”

US Department of
the Army

http://www.army.mil/usapa/epubs/pdf/
p5_11.pdf

SEI-CM-13-1.1 “Introduction to
Software Verification and

Validation Module”

Carnegie Mellon
University,
Software

Engineering
Institute

http://www.sei.cmu.edu/publications/d
ocuments/cms/cm.013.html

NASA Briefing “Software
Independent Verification and

Validation”

National
Aeronautics and

Space
Administration

A briefing on how to conduct SIV&V.
http://ses.gsfc.nasa.gov/ses_data_20
01/010307_Bruner_IVV.ppt

NASA SLP IVV 09-1 Rev. I
Effective March 2006

National
Aeronautics and

Space
Administration

This is a System Level Procedure
(SLP).
http://ims.ivv.nasa.gov/sharedfiles/do
cuments/IVV_09-1.doc

NASA PD-ED-1228
“Independent Verification and
Validation of Embedded
Software”

National
Aeronautics and

Space
Administration

NASA preferred reliability practice.
http://klabs.org/DEI/References/desig
n_guidelines/design_series/1228msfc
.pdf

3. The Role of SIV&V
The primary role of SIV&V is to provide the Program Director (PD) or

Management with an independent assessment capability to guarantee:

• Software is developed and tested to ensure high confidence in the

system and component capabilities

• Software is mature and dependable

• Technical issues and trends are identified in a timely manner for

Management focus

• Risk reduction of Program, Element or Component failures due to

operational or simulation software defect(s)

14

These activities include software design evaluation, code inspections,

code assessments, and independent test reviews. The overall objective of

software V&V is to insure that the product is free from failures and meets its

user’s requirements and expectations.

Broadly speaking, it can be stated that some level of SIV&V should be

used on the following classes of systems (Defense Acquisition University 386):

• Real-time critical software systems that must work every time they are

used

• Programs having critical outputs that cannot be verified on every run

• Programs having a high cost of failure in terms of human life, national

security or money

• Software for which the cost of error detection through operational use

or testing exceeds the cost of employing SIV&V

• Software for which the cost of support is expected to exceed the cost

of using SIV&V

Thus, the description of SIV&V as “cheap insurance” becomes patently

obvious, particularly when one considers the consequences of failure of critical

software, especially when lives are at stake.

4. SIV&V Challenges
In the previous three sections we have discussed the emerging need of

SIV&V from a historical perspective, the policy and guidelines developed by both

the government and commercial entities, and the primary role and uses of

SIV&V. Given that the reader accepts the premise of the last three sections, and

understands the need for and uses of SIV&V, the challenge lies in how to

effectively apply a SIV&V strategy to existing acquisitions as well as

incorporating SIV&V as an integral part of new acquisitions.

The first part of this challenge is to educate management on the what,

how, and necessity of SIV&V, to get the buy in required for implementation.

15

The second part of this challenge is to find the financial resources required

to carry out SIV&V and to allocate them appropriately.

The third part of this challenge is to educate the workforce in the SIV&V

process; that is to understand when it makes sense, where it makes sense, how

to tailor it, how to implement it, and how to utilize it to improve their software

processes and products.

The fourth part of this challenge is to understand that SIV&V is not the

proverbial “silver bullet” that will fix poor software development processes, poor

requirements development and control, poor configuration management, poor

systems/software engineering, poor quality control, or poor documentation. It is

however, a method of “cheap insurance,” that will allow a good software process

to be even better by finding problems before software gets deployed to the user.

The final part of this challenge lies in understanding the nature of the

SIV&V process as one that is constantly evolving and developing in an effort to

keep pace with the rapidly changing world of software development. This will

necessitate that those utilizing SIV&V and SIV&V agents stay current with

developments in the software and SIV&V fields and continually educate their

workforces so that they remain both effective and relevant.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. THE SIV&V GUIDE

A. SIV&V SIZING AND TYPES
1. Introduction
Software IV&V is indeed an important aspect of developing quality

software. In many programs, scarce amounts of funds are allocated to SIV&V

efforts. Thus, each endeavor should be tailored so that it corresponds with the

level of criticality of the software development effort. This section will discuss

and describe the different types and sizing metrics of SIV&V agents

2. Survey of SIV&V Metrics
Several key SIV&V metrics were established for comparing the size,

responsibility, cost, and performance of both the respective SIV&V teams and the

Developer across various systems. The cumulative data is presented in Table 3.

Names of actual programs and associated SIV&V agents were changed to

protect the confidential nature of the information.

18

Table 3. SIV&V Metrics

SIV&V Metric System A System B System C System D

Percent of SIV&V Budget to

Development Budget

6.6% 4.9% 4% 8%

Percent of SIV&V LOE to

Development LOE

4.3% 8.2% 5.7% 15%

Ratio of SIV&V LOE to # of KSLOC 1:72 1:44 N/A 1:13

Ratio of SIV&V LOE to # of SW

Requirements

1:355 1:525 N/A 1:350

Development Cost per SLOC $150 $275 N/A $125

Average Cost to Fix Error

(Before SW Release)

Est. $0.5K N/A N/A $2.5 per

SLOC

Average Cost to Fix Defect

(After SW Release)

Est.

$1K

Est.

$20.6K

N/A $12.5 per

SLOC

Ratio of SIV&V LOE Cost to

Developer LOE Cost

1:1.54 1:1.7 N/A 1:1.89

(N/A – Not Available)

The metrics indicate several trends common across all of the surveyed

efforts. Items of interest include:

• All of the SIV&V efforts are budgeted less than 10% of the software

development budget.

• The majority of the SIV&V efforts have staffing levels less than 10% of

that of the Developer.

• On average, each SIV&V analyst is responsible for 410 software

requirements and/or 43 KSLOC.

• Average SIV&V labor rates are approximately 59% of the Developer

rates.

19

As indicated above most SIV&V groups are not properly resourced and

operate in a degraded mode. However, even in a degraded mode of operation or

service they always provide benefits to the program and development effort.

From the research provided above, each individual on the SIV&V team is

responsible for approximately 300 - 550 requirements and 10 – 98 thousand

SLOC. These metrics can be used for future cost and resource estimation

purposes.

3. SIV&V Staffing Levels
There are four generally accepted types (or levels) of SIV&V as

documented by Lewis (Lewis 1992 12-13):

• Full, In-Phase SIV&V – A comprehensive program spanning

requirements phase through post-deployment support. SIV&V costs

for this type are typically 8-17% of the total program software

development budget. The System D SIV&V program at Software

Engineering Directorate (SED) is an example of the complexity of a

Full, In-Phase SIV&V.

• Partial SIV&V – A less comprehensive program than Full SIV&V,

Partial SIV&V begins during the design or early coding phases and has

limited involvement with requirements analysis. SIV&V costs are

typically 6-13% of the total software development budget.

• Endgame SIV&V – This level of SIV&V is focused primarily on the test

and integration phase. SIV&V costs are typically 2-7% of the total

software development budget. The GMD programs at SED (Sea

Based X-band Radar, Embedded Test, and Ground Based Interceptor)

are examples of Endgame SIV&V support.

• Audit-level SIV&V – This is often referred to as “over-the-shoulder”

SIV&V and is a minimal effort. Often, a tiger team is used to determine

the adequacy of the software development process.

Additionally, Lewis asserts, "Most past SIV&V programs have cost

between 2% and 18% of the software development cost. The higher-cost

20

programs invariably had hardware and/or software development costs like

simulations and tools embedded in them. For beginning SIV&V cost estimates,

try to begin between 8% and 10% of the software development cost estimate.

SIV&V programs that are funded at less than 4% to 5% of the development cost

will have to begin to delete some routinely performed tasks.” (Lewis 1992 280)

During the course of this study, it was found that SIV&V levels were

typically that of the Endgame variety, and the costs for the SIV&V programs

varied from 2% to 10% of the weapon system’s overall software budget, with an

average of 5.3%. After analyzing the levels of SIV&V and the activities

conducted on these programs, and given the relatively low percentage of

program funding provided for SIV&V, most of the programs had to delete some

routine tasks in order to provide the most positive impact to the program with

limited funding.

For a secondary reference, Figure 1 below provides a general

recommendation for the percentage of technical support in relation to the size of

the program as depicted by the AMC School of Engineering and Logistics. Most

SIV&V programs are usually at the lower end of this range regardless of the

program size.

21

Figure 1. Technical Support And Program Size (Missile Defense Agency 15)

B. THE BENEFITS OF SIV&V

1. Introduction
Without question, the majority of weapon systems have become

increasingly software centric with each generation of system that is fielded. The

allocation of budget to software engineering has proportionally grown as the

systems have expanded and matured. A key program management technique

employed by many project offices that has successfully reduced software risks

and increased confidence in performance attainment is Software Independent

Verification and Validation (SIV&V).

A significant portion of the activities at the U.S. Army, Research,

Development, and Engineering Command (RDECOM), Aviation and Missile

Research, Development and Engineering Center (AMRDEC), Software

Engineering Directorate (SED) at Redstone Arsenal, Alabama, are dedicated to

the execution of SIV&V programs for a cadre of important weapon systems.

These programs vary in budget, size, and complexity. The weapon systems

represent the full range of phases in the development cycle and fielding.

Sm
all

 P
ro

gr
am

Lar
ge

 P
ro

gr
am

ALL FACTORS
FAVORABLE

ALL FACTORS
UNFAVORABLE

10% 20% 30% 40% 50%

Reference: AMC School of Engineering & Logistics

Sm
all

 P
ro

gr
am

Lar
ge

 P
ro

gr
am

ALL FACTORS
FAVORABLE

ALL FACTORS
UNFAVORABLE

10% 20% 30% 40% 50%

Reference: AMC School of Engineering & Logistics

22

The purpose of Section B is the following: 1) Provide data that supports

the value of implementing a SIV&V program on a software intensive system; 2)

Provide recommendations based on SIV&V success stories and lessons learned

to help improve the acquisition of software intensive systems; 3) Recommend an

approach for increasing the probability of successful software program

development.

2. Costs Associated with Discovered Errors
A fundamental tenant of SIV&V is that the earlier in the software life cycle

in which an error is detected, the cheaper it is to fix. This is usually expressed in

terms of the software phase in which the error is detected versus the cost to fix

the error. The same relationship can be expressed in relative terms such as, a

requirements error discovered during operation costs approximately 200 times

more to fix than finding the error during requirements definition (Boehm 1981).

SIV&V studies use this approach to quantify SIV&V savings. The most

universally utilized relationship is from Barry Boehm’s classic textbook, Software

Engineering Economics (Boehm 1981). His study showed that the relationship is

logarithmic. This is shown in the Figure 2:

23

Figure 2. Cost To Fix Defect Versus Life Cycle Phase (Boehm 1981 40)

Since the purpose of this section is to calculate such costs, a

mathematical representation of the figure may be useful. By using the midpoint

of the six phases projected to the given line and numbered 1 to 6, a table of

values can be generated and an exponential equation calculated. The

approximate equation is:

y = .717℮.921x

A table lookup approach will also work. This is presented in the Table 6,

“Study Multipliers,” later in this document.

Experience shows that not all errors are created equal. This is why all

Software Problem Report (SPR) systems utilize a priority scheme. The most

commonly used scale is 1 to 5, where 1 indicates a safety-critical item or

prevents mission accomplishment, and 5, which typically indicates an

insignificant documentation issue.

Phase in which defect was fixed

10

20

50

100

200

500

1000

R
elative cost to fix defect

2

1

5

Requirements Design Code Development Acceptance Operation
 test test

Larger software projects

• Median (TRW Survey)

 80%

 20%
SAFEGUARD

GTE

IBM-SSD

•

•

•
•

•

•

24

How does this relate to the value of SIV&V? Simply stated, an SIV&V

team that routinely finds higher priority defects is more valuable than a team that

routinely finds insignificant documentation errors. A simplistic approach to

handle this would be to include only Priority 1, 2, and 3 SPRs in the value-added

calculation. Although this approach simplifies the calculation, it ignores two key

points. First ,a single Priority 1 SPR might be much more valuable than several

Priority 3 SPRs combined. Second, finding many lower level SPRs is still of

value. Again, not all defects and SPRs are created equal. In addition, not all

SIV&V findings are associated exclusively with an SPR. Therefore, basing the

calculation solely on Priority 1, 2, and 3 SPRs misses some value-added features

of an SIV&V team.

A more realistic approach to determine SIV&V value is to draw upon a

logarithmic weighting calculation similar to the relative cost calculation approach

indicated previously. A simple three “bin” approach for mission critical findings,

major findings, and findings scaled at 100 units, 10 units, and 1 unit, respectively,

gives adequate granularity with a simple calculation. It is then straightforward to

calculate total units divided by level-of-effort (LOE) to obtain value per person

during a period of time. Summary metrics for multiple groups and trend graphs

can then be easily generated.

Please note the importance of the LOE being included. For example, a

team of five people finding ten problems is more valuable than a team of fifty

people finding the same ten problems. Calculating the value over a constant

period is necessary to show trends and process improvement. The use of the

generic term “unit” is also intentional. By eliminating discussion of costs up front,

the true issue of productivity (units) is highlighted, and is not clouded by dollars.

The following example from System D at SED illustrates this method. A

team of 30 finds 3 mission critical findings, 51 major findings, and 14 basic

findings. The calculation of value-added is simply:

(3*100 + 51*10 + 14*1) / 30 = 824 units / 30 LOE = 27.5 units per person

25

Assigning findings into three “bins” is similar to assigning priorities to

SPRs. Mission critical findings would include such findings as: mission saving,

safety critical, system-of-systems improvement, and DoD/Army-level impact.

Major findings could include: test failures prevented/detected, major process

problems, significant cost savings, production improvement, and significant

interoperability issues.

The list for findings is more general and flexible to allow the full scope of

SIV&V value-added to be included. This is allowed in this approach since each

finding is only worth one unit.

SPRs identified by the SIV&V team would be included as follows:

• Category 1 SPR = Mission Critical Findings

• Category 2 SPR = Major Findings

• Category 3 SPR = Findings

In summary, the appeal of this approach is multifaceted. It is simple to

use. It can be used on small or large programs. It can be used on both simple

and complex programs. And most importantly, it can be used to relate the value-

added of SIV&V between dissimilar programs.

3. Return On Investment (ROI)
In order to show ROI for SIV&V costs, the “I” in ROI must be quantified.

SIV&V costs are dependent upon software program complexity, size, and needs,

as well as, the breadth and depth of involvement required of the SIV&V team

performing the service. As a general rule, total SIV&V costs are dependent upon

the extent of SIV&V performed, and in which phase of the program SIV&V is

begun.

An accepted management metric that is used to determine the worth of an

investment is ROI. It is also known as the benefit-to-cost ratio. Even though

there are those who believe that only a small impact is attained by SIV&V, there

is sufficient evidence that numerous DoD and National Aeronautics and Space

26

Administration (NASA) software programs have implemented successful SIV&V

programs that have delivered positive ROIs.

This study selected two programs, Systems B and D, from Table 3 “SIV&V

Metrics” in Section A 2, in an effort to survey the ROI for the weapon systems

employing SIV&V. Although many ROI calculations exist, this derived calculation

would best fit our software situation.

The derived formula,

ROI = (A – (B – C)) / Overall SIV&V Costs

 Where: A = Costs avoided by intercepting defect

 B = Costs to process the defect

 C = Costs to correct the defect

is used to calculate the SIV&V ROI.

The general approach for calculating ROI was to first calculate the

average cost per delivered source line of code (SLOC). Second, the

development phase in which SIV&V detected the error was determined. For this

study, all SIV&V detected errors found occurred in the “Test Phase.” It goes

without saying, that waiting until testing to identify and remove problems negates

most of the benefits associated with SIV&V. Third, a determination was made to

find in which phase the error originated. Using multipliers based on documented,

historical data, the cost to process and correct the defect was calculated. Two

different multipliers were used in order to show that there is disagreement

between the relative costs to correct defects by phase. Finally, the cost

avoidance was determined assuming that the error would not have been caught

until deployment if no SIV&V had been utilized. The inputs to the ROI calculation

are addressed below.

27

a. Average Source Line of Code (SLOC) Development Cost
First, a basis for cost to repair a defect was needed. It was decided

that the developer’s cost per delivered SLOC would be used as an input for

determining cost avoidance and defect correction. This relationship can be

described as follows:

$ / SLOC = Total Development Software Budget / Delivered SLOC

Our study found that delivered SLOC costs vary based upon a

variety of factors such as programming language, experience of the Developer,

complexity of the system, and location of the Developer’s organization. We

found that the development cost for the systems analyzed was:

System B = $275 per delivered SLOC

System D = $125 per delivered SLOC

The important thing to note is that the delivered code costs can

become much higher if SIV&V is not employed early in the lifecycle. An absolute

dollar cost is not always the most important central aspect, but rather the costs of

changes and errors to total cost which are phase dependent. Details of this

research are demonstrated in the paragraphs below.

b. Analysis of SIV&V Software Trouble Reports
Corrected and Implemented by the Developer

For the systems analyzed for this study, Software Trouble Reports

(STRs) or Software Change Requests (SCRs) were accepted, analyzed,

corrected, and implemented by the developer. The STRs were assessed as to

how the developer classified each anomaly as to the phase in which the error

originated. The classification of phase originated is shown in Tables 4 and 5

below:

28

Table 4. System B

Phase Originated # STRs SLOC

Requirements 9 24

Design 2 38

Code and Unit Test 48 567

TOTALS 59 629

Table 5. System D

Phase Originated # STRs SLOC

Requirements 74 4154

Design, Code, Unit Test 261 1440

Sys Test & Integration 12 49

 TOTALS 347 5643

From the metrics in the above tables, one can identify the large

difference in the number of STRs submitted by the different systems. System B

was only 4.9% of the developer budget and System D was 8.0%. This data

indicates that more problems are typically found when a larger SIV&V agent is

established. Likewise, the data reveals where increased emphasis must be

placed, namely Design, Code, and Unit Test phases. Based on our examples we

believe that most programs would experience similar results.
c. Multipliers for Relative Cost to Correct Defects
Two different multiplier sources were utilized for this study. In

Table 6 below, the first one shown was developed by Barry Boehm based on an

old study of his which analyzed three different systems (Boehm 1989 206). The

other source was from the Titan study (Barber 3).

29

Table 6. Study Multipliers

Phase Detected Phase Originated Boehm
Multiplier

Titan
Multiplier

Requirements Requirements 1 1

Design Requirements 3 5

Design Design 2 1

Code & Unit Test Requirements 9 10

Code & Unit Test Design 6 2

Code & Unit Test Code & Unit Test 1 1

SI Test Requirements 29 50

SI Test Design 26 10

SI Test Code & Unit Test 20 5

SI Test SI Test 1 1

Integration Requirements 74 130

Integration Design 71 26

Integration Code & Unit Test 65 13

Integration SI Test 45 3

Integration Integration 1 1

Operation Requirements 169 368

Operation Design 166 64

Operation Code & Unit Test 160 37

Operation SI Test 140 7

Operation Integration 95 3

30

The derived formula,

SLOC DC * SLOC RC * PM = CPCD,

 where SLOC = Source Lines of Code

 DC = Defect Cost,

 RC = Repair Cost

 PM = Phase Multiplier

 CPCD = Cost to Process and Repair Defects

is used to calculate the estimated costs to process and correct defects, and the

avoidance costs of intercepting the defects.

Calculating the estimated costs to fix the STRs implemented by the

Developer using the two different sets of multipliers yielded the following:

 Estimated Cost to Process and Correct Defects
 System B System D

Boehm multipliers: $3.5M $20M

Titan multipliers: $1.2M $28M

As stated previously, the assumption is made that had SIV&V not

been employed, the defects included in this study would not have been detected

until the system had been deployed, thus resulting in dramatically increased

costs to correct. As was shown previously, two different sets of multipliers were

used to calculate the cost avoidance figures:

 Costs Avoided by Intercepting Defect
 System B System D

Boehm multipliers: $28M $119M

Titan multipliers: $ 9M $203M

31

The deltas between the two examples are very large especially for

System D. As you can see the benefits of having an SIV&V agent is worth the

investment. As documented by Lewis, Figure 3 below, latent requirements and

design errors can cost up to 36 times more to detect and fix during test and

integration than if caught in the phase in which they were generated (Lewis 1992

279). In retrospect, if SIV&V resources were spent on all of the development

phases, dramatic reduction in costs could have resulted and without question,

the worth of SIV&V would be justified as a cost saving mechanism and declared

“cheap issuance” for the development program.

Figure 3. Average Cost of Discovering Errors (Lewis 1992 279)

d. Return On Investment Calculation
The growing interest to measure Return On Investment (ROI) is

fueled by the need to document and measure improvements in both individual

and agent performance. The resulting ROI calculation of systems B and D is as

follows:

.

C
os

t i
n

D
ol

la
rs

Phase
R D C TR D C T

NOMINAL COST RATIOS

D to R = 2.5 : 1
C to R = 4.9 : 1
T to R = 36 : 1

SOURCE : Independent Verification and Validation:
A Life Cycle Engineering Process for Quality
Software, Lewis, Robert, p. 279, 1992

Requirements (R) = $100
Design (D) = $250
Code & Unit Test (C) = $488
Integration and Test (T) = $3568

Uncertainty = 25%

Error Cost Grows With Time:

32

 Return On Investment

 System B System D

Boehm multipliers: 6.8 4.9

Titan multipliers: 2.1 8.8

Based on the ROI quoted in the Titan study of an ROI of 10, it is not

unreasonable at all for the U.S. Army’s Software Engineering Directorate (SED)

to state for the systems analyzed that the ROI range is:

2.1 < SIV&V ROI < 8.8, with an average of 5.5:1

If the sampling size was increased for all of the SED SIV&V

programs, a more representative assessment could be made to the overall ROI

that is delivered. This report does conclude, however, that the ROI average for

SED SIV&V efforts is likely within the recommended range. The software

industry has yet to define a recommended operating range for ROI; however, a

2% ROI is the projected break-even point. An ROI greater than or equal to 5%

significantly justifies the effort and results in cost improvements, increased

quality, and enhanced schedule.

Another way to look at ROI is the differences between fixed and

variable costs. Typically, costs for SIV&V agents are fixed because the SIV&V

agent is focused on prevention. The developers cost are mainly variable

because the developer is focused on detection and correction. If the SIV&V

effort increases and prevents increasing numbers of defects then SIV&V has

helped to reduce variable costs. As a result, investments in SIV&V should

continue as long as the agents fixed costs remains below the prevented defects

cost (B +C, variables defined in ROI section above).

33

e. Development Schedule Reduction
The Standish Group examined 8,380 software projects and found

that 35% of all software efforts were “challenged,” 16% were successful, and

31% cancelled. The “challenged” groups exceeded software delivery schedules

by 222%, were over budget by 189%, and were missing approximately 39% of

the expected capabilities (NASA 1985 2). Given this type of track record, the

question that many Program Managers (PMs) ask is what can they do to improve

the software product and reduce the development schedule? The answer is

SIV&V.

Software SIV&V is indeed an important aspect of developing quality

software (Defense Acquisition University 387). History has shown that software

defects have delayed multi-million dollar space launches, prevented the Denver

airport opening for years, destroyed NASA Missions (Mars Climate Orbiter and

Polar Lander), killed service men and women (e.g. marines in a helicopter crash),

and shutdown banking and emergency response systems.

A majority of the time, SIV&V does not begin until the testing phase

of an acquisition program, where problems become more noticeable. Waiting

until the end to identify and report problems only increases the development

schedule and cost. A simple analogy from the auto industry can be used here to

illustrate this issue within the software world. “The mass-producer…”, in this

case the software developer, “…keeps the [assembly] line moving at all costs but

ends up doing massive amounts of rework at the end, while the lean producer…”,

in this case a PMO using SIV&V, “…spends more effort up front correcting

problems before they multiply and ends up with much less total effort and higher

quality in the end” (Womack 116).

A study published in 2002 by the National Institute of Standards

and Technology (NIST) estimated that software bugs are so common that their

cost to the American economy alone is $60 billion a year or about 0.6% of gross

domestic product. According to NIST, 80% of the software development costs of

a typical project are spent on identifying and fixing defects (Building A Better

34

BugTrap 2). A bug which costs $1 to fix on the programmer’s desktop costs

$100 to fix once it is incorporated into a complete program, and many thousands

of dollars if it is identified only after the software has been deployed in the field

(Building A Better BugTrap 2).

SIV&V’s main goal is to complement the development effort by

reducing risks and identifying errors, which often lead to schedule slippage. PMs

will receive the greatest payoffs when they utilize a SIV&V agent for thorough

requirements and design verification aimed at preventing otherwise costly errors,

omissions, and inadequacies from ever reaching the coding stages.

Further, SIV&V can be very instrumental in finding errors during the

coding phase. On average, professional coders make 100 to 150 errors in every

thousand lines of code they write, according to a multiyear study of 13,000

programs by Humphrey of Carnegie Mellon (Mann 3).

Implementing SIV&V throughout the life cycle will lead to better

software products, potentially reducing schedules, and costs, in addition to

saving lives. If applied early and effectively, it can help maintain balance in the

cost-schedule-quality equation throughout the development process (Callahan).

If applied late or reluctantly (so-called "11th hour V&V"), it can fail to have any

effect and be cost-ineffective (Callahan). Embracing SIV&V is an endeavor to

reduce the risks and associated cost-schedule pressures inherent in the

development of complex software, by changing the current cultural paradigm of

“mass production” to one of “lean production.”

f. More Measurable Results of SIV&V
In addition to calculating a ROI for SIV&V programs at SED,

valuable data can be gleaned from a close look at a large SIV&V effort at SED

with 20+ years of historical SIV&V data available. This program, referred to as

System D for this report, has had much success with SIV&V, and consequently,

has had much success as a program. System D’s SIV&V effort is about 8-10%

of the Developer’s yearly budget, including labor, travel, and material. System

D’s SIV&V is in-phase, has source-level access, reports directly to the

35

Government customer, and has an enhanced SIV&V scope. System D’s SIV&V

effort has been ongoing since the early requirements development stage of the

system. These factors, combined with the benefits of the SIV&V being

performed by SED, which is a Government Life Cycle Center, have contributed to

the success of the SIV&V effort as well as the program itself, as demonstrated by

the following information.

System D’s SIV&V team found and reported errors on 44% of

requirements SLOC that were deemed completed by the Developer. Since the

SIV&V is “in-phase,” these requirements errors were able to be corrected during

the requirements phase. A quick look at the “Study Multipliers” in Table 6 shows

the rapid growth in cost to correct that 44% of new requirements SLOC as the

error is propagated through the development cycle. At best, if all of the errors

were found and fixed in the next phase, the cost would have increased by a

factor of five. Near the worst case, if all errors were propagated through

integration, but discovered before operational fielding, the cost would have

increased by a factor of 130. If carried into operational fielding, the factor grows

to 368. One must also consider how many of the requirements errors might have

gone undetected altogether and what the resulting cost would be in dollars,

schedule, and user benefit. However, due to the iterative nature of the

developer’s build cycle, the requirements phase is not closed until delivery of

requirements to, and return from, the SIV&V team; therefore, the maximum

number of requirements errors can be found and fixed during the requirements

phase. Approximately 44% of the developer’s new requirements SLOC would

have had errors that would have been discovered and fixed at much higher cost

and schedule impact.

Similarly, System D’s SIV&V team found and reported errors on

1.2% of SLOC during the Design, Code, and Test phase that were deemed

completed by the Developer. Again looking at the “Study Multipliers” in Table 6 it

is easy to quickly spot the value of finding and correcting these errors in the

phase in which they were generated, or quickly thereafter. Also, note that this

36

percentage of SLOC with error is artificially low due to reporting methods.

Further down the development cycle, System D’s SIV&V team found and

reported errors on 0.8% of SLOC during the System Test and Integration Phase.

Once more, this percentage is artificially low due to reporting and tracking

methods of the developer, but provides insight into the effectiveness of SIV&V.

In 2001, NASA conducted a study on “Developing Risk-Based

Financial Analysis Tools and Techniques to Aid IV&V Decision-Making.” The

study indicated that due to SIV&V’s presence the software product improved

tremendously. By inserting SIV&V into the requirements phase, the software

developer had to rework 22% of its effort due to defects. Both, the design and

programming phases required 7% rework. However, what was most telling and

shocking was when the SIV&V effort was delayed until the test and integration

phase, 28% rework had to occur by the developing organization to correct the

product.

There are many other benefits the System D SIV&V team has

provided to the Government customer, which cannot be easily tracked to a

metric, but give valuable payback. System D’s SIV&V team is often used as a

source of expertise by the Government customer. Since the System D SIV&V

team was put in place very early in the system development, and has maintained

an unusually low personnel turn-over rate, both the system-level and functional-

level of expertise of the SIV&V team meets or exceeds the level of expertise of

the developer. Having a second source of expertise, in addition to the developer,

is valuable in three ways, 1) when the developer looses resources, 2) when it is

more efficient to have the SIV&V team work an issue to prevent schedule

impacts to the developer, and 3) when the SIV&V team is a cheaper resource

than the developer.

System D’s SIV&V team has been relied upon heavily during times

of war and when the soldier in the field needs an explanation, since the software

developer is typically no longer available, and for special studies and

investigations. Since SED, a Government institution is System D’s SIV&V

37

resource, the Army Evaluation Command relies on the SIV&V team for testing

requirements that are outside of their resource limitations. System D’s SIV&V

team also represents the Government customer on the System Safety Analysis

Board.

So when taking a close look at an example of SIV&V in action, the

value of SIV&V, when implemented properly, is measurable in both cost and

intrinsic value, and both values are large. System D’s example of success also

demonstrates several crucial keys to successful SIV&V. Historical data from

many sources demonstrates that SIV&V does, in general, have a positive ROI.

Combining “classical” SIV&V with lessons learned and crucial keys from the rich

history at SED can drive the ROI to its maximum value.

g. Examples With and Without SIV&V
(1) Ariane 5 Without SIV&V. On June 4, 1996, the

maiden flight of the European Ariane 5 launcher crashed about 40 seconds after

takeoff. Media reports indicated that the cost of this lose was half a billion dollars

-- uninsured (Knutson; Missile Defense Agency 24).

Figure 4. Ariane 5 Crash (Knutson; Missile Defense Agency 24)

Ariane-5 was the newest in a family of rockets designed to

carry satellites into orbit. On its maiden launch on June 4, 1996, it flew for just

under 40 seconds before self-destructing, destroying the rocket and its payload

of four satellites (Knutson; Missile Defense Agency 24).

38

After the incident, Ariane immediately set up a Board of

Inquiry to conduct a thorough investigation to discover the root cause of the

accident (Knutson; Missile Defense Agency 26).

The core problem in the Ariane failure was incorrect software

reuse. A critical piece of software was reused from the Ariane-4 system, but

behaved differently in the Ariane-5 because of differences in the operational

parameters of the two rockets. One of the important lessons from the Ariane-5

failure is that the quality of a device's software must be considered in the context

of the entire system. It is an important lesson to keep in mind as software reuse

continues to be an important trend in software engineering. If SIV&V were

utilized these abnormal conditions could have been avoided (Knutson; Missile

Defense Agency 26).

The Ariane failure was highly publicized and documented.

(2) NASA With SIV&V.

Figure 5. NASA SIV&V Policy (Missile Defense Agency 23)

Cost of Failure is the
Rationale for NASA Support

to SW IV&V

39

h. DoD SIV&V Examples:
(1) AEGIS Without/With SIV&V. Recent headlines stated

“AEGIS SHIPS USS VICKSBURG and USS HUE CITY Docked After Contractors

Have ‘Free-Reign’ of Software - Deemed Not Seaworthy Until SIV&V is

Reinstated” (Missile Defense Agency 27), and “Software Glitches Leave Navy

Smart Ship Dead In The Water” (Slabodkin).

The cost for NSWCDD's Aegis Baseline SIV&V process

varies significantly based on the size and complexity of the functional capability

that is being developed. A software development effort such as Baseline 6

Phase 3 costs as much as $50M LOE spread over the design, code, integration

and test phases in a 4-5 year span for the SPY-1 (Radar) element alone.

Numerous significant issues and problems were identified, investigated, and

resolved prior to major milestones as a result of NSWCDD's SIV&V involvement.

Considering that SPY-1 Baseline 6 Phase 3 cost well over $500M to develop and

field, $50M for SIV&V was a small price to pay (Missile Defense Agency 27).

The yearly cost NSWCDD applies to SPY-1 SIV&V for SW

development is about $10M. This includes personnel to support design reviews,

code inspections, unit testing, test procedure development, formal element

testing, formal system level testing, SW configuration management, SW quality

assurance, SW documentation, training, and facility operations (Missile Defense

Agency 27).

(2) THAAD Without/With SIV&V. After Three Repeated

Flight Test Failures (Dem/Val), THAAD Project Office requested SIV&V to test all

software changes to verify correct software implementation.

40

Figure 6. THAAD Electronics Box (U.S. Army 28)

The THAAD missile SIV&V effort identified 10 percent

(approximately 200) of all avionics software problems.

• Many critical; fixes had to occur before flight tests

resumed

• SIV&V found these problems in released (tested) code

• SIV&V testing helped get the THAAD program on track

i. Commercial Examples: No SIV&V Agent
Utilized
(1) FAA. The Federal Aviation Administration (FAA)

encountered a software glitch; software patches were dispatched to Boston and

other airports to enhance the ground-based radar systems. The new software

failure was noted when the system could not see two planes approaching each

other on the runway, which was a failure caused by the patch. The FAA reported

in another incident that a backup system that was designed to handle planned

server downtime resulted in a three hour loss of air traffic control communications

between 800 plus airplanes (Entries Hall of Shame).

(2) AT&T. American Telephone and Telegraph (AT&T)

experienced a billion dollar failure in January 1990, when a software failure took

down the entire United States (US) long distance telephone network for nine

hours (AT&T Wireless).

41

(3) US Airways. US Airways experienced a software

failure in April 2005, when the ticketing system issued incorrect fares for several

hours. During this occurrence some tickets were sold for under $2.00. The

airline honored the reduced fares as a gesture of good faith, but lost a substantial

amount due to the failure (Entries Hall of Shame).

(4) Toyota. In October 2005, the Toyota Motor Company

recalled more than 75,000 Toyota Prius-hybrids due to a software failure that

may have shut down the engine. Toyota quickly implemented the recall which

avoided having the defect become permanently associated with the vehicle line

or with hybrid safety (Entries Hall of Shame).

C. APPLYING SIV&V IN THE CYCLE PHASE
The following sections are primarily based on an IV&V process chart

authored by R. O. Lewis (Lewis 1998).

1. Introduction
Software Independent Verification and Validation (SIV&V) activities

(notional list of activities shown in Figure 7 below) are used to assess risk and

the quality of software throughout the development process and are performed at

the unit, module, integration, and system levels. SIV&V activities should begin

early in the software development process to assure consistency between

product specifications and requirements, design, implementation and testing.

42

Figure 7. Notional SIV&V Activities (Walters)

Independent reviews are conducted during and at the end of each phase

of the life cycle to determine whether established requirements, design concepts,

and specifications have been met. The customer relies on the Independent

agent to provide a go or no-go decision on whether to proceed to the next step or

start the process over. The following sections will highlight some of the different

activities that are required of SIV&V in each cycle phase.

2. Concept Definition Phase
Concept Development is typically the first phase of a major system

development program. Normally, this phase includes competition among

contractors who offer different solutions to some basic need, in which case they

often either produce prototypes of their designs or conduct studies and analyses.

Although, the process may vary significantly, programs that have a formal SIV&V

effort at this point in the life cycle, invariably end up improving the System

43

Specification (SS), analyze the external interface requirements and associated

inputs, and examine the feasibility and adequacy of each competing design.

SIV&V reviews all available input materials to enhance its program

understanding as indicated by the following tasks (Lewis 1998):

• Initial SIV&V activities focus on evaluation of the mission needs,

external system requirements, external interfaces, and overall program

planning data. This should include a survey of the users requirements,

examination of make-buy decisions, assessment of technology drivers,

and evaluation of the operational concept.

• The various program plans are assessed for consistency,

completeness, and correctness to ensure essential aspects of the

conceptual system are addressed. These include but are not limited

to: interface control, configuration management, safety, risk

management, master program plan schedules, integration, resource

control, environment, and planning for reaching operational capability.

• SIV&V evaluates the system concepts against the requirements

mission and user needs. This information is used to assist in the

evaluation of the Technical Requirements Document (TRD), system

requirements, and drafts of the SS or Prime Development Specification

(PIDS) produced and controlled by the customer.

• A System Requirements Review (SRR) covers each draft release of

the System Specification. There are often several SRRs held to firm

up the requirements.

• The SIV&V Plan is drafted as early as possible, but usually has to

await the generation of the contractor’s Software Development Plan

(SDP) for completion; because, much essential information is still

missing.

• As the program requirements become stable, SIV&V examines

program feasibility and completeness, allocation of requirements to

major subsystem elements, and supports the initial conversion of the

44

critical functions and requirements into a formal listing or requirements

trace database. Other products, such as the discrepancy logs are

developed and captured during this period.

• As the SIV&V team identifies potential problems and issues, reports

are submitted to the customer’s Configuration Management (CM) point

or designated customer representative. These problems or anomalies

are typically reported and summarized in status reports.

• Engineering analysis is used to evaluate the evolving systems

concepts. If the system is extremely complex, high level modeling and

simulation are often used to evaluate the completeness and feasibility

of competing system designs.

• SIV&V identifies inconsistencies and shortcomings in concepts,

technology drivers, make-buy decisions, documentation, trades

studies, and the evolving System Specification. Special emphasis is

placed on critical software issues including: user and performance

requirements, operational feasibility, modeling and prototyping,

hardware performance needs, safety issues, and system and software

risks and their mitigation.

45

Figure 8. SIV&V Battle Rhythm Concept Development Phase (Lewis 1998)

3. Requirements Phase
“During the requirements phase, the user tries to articulate a concept of

expected system function and performance into concrete detail” (Department of

Air Force 2-20). SIV&V activities during the requirements phase include analysis

of the software and hardware requirements to determine if the software

engineers have translated user definitions into realistic and achievable

specifications. Similarly, SIV&V determines if the established requirements are

testable and capable of being satisfied. The requirements phase is a segment

that first concentrates on system requirements, and then software requirements.

The activity verifies that the software requirements have been prepared in

accordance with applicable standards, and evaluates the progress of the

requirements toward achieving an operational system. Requirements Analysis

identifies critical risks and potential process and product improvements.

Potential risks due to defects in the requirements are identified and addressed

through discussions with the developer. High priority risks are analyzed to

- Mission Needs Statement
- Operational Requirements Document
- Initial Mission Planning
- External System Requirements
- Overall Program Planning Data
- Identify Interoperability Constraints
- Make-Buy Decisions
- Survey of User Needs
- Initial System Concepts
- Feasibility Study Reports

- System Specification or Prime Item
Development Specification (PIDS) Draft
Complete
- Program Management Plan
- Draft Preliminary System Design Draft
- Complete System Concept Studies
- Initial System Engineering Trade
- Perform Special Studies
- Define Hi-Level System Architecture
- Verified Concept Study
- Review System Engineering Management
Plan
- Reports of System Requirements
Specifications

SIV&V Battle Rhythm
(Concept Development Phase)

Input – Entrance Criteria Output – Exit Criteria

46

identify potential process and product improvements. This multi-part

requirements phase is in concert with most approved development standards

and typically encompasses the following tasks (Lewis 1998):

• During concurrent engineering, hardware and software requirements

are synthesized to include numerous trade-offs and performance

considerations. Hardware benchmarks are used to measure

performance using typical applications and are verified by SIV&V.

• This phase addresses the following basic verification criteria, namely

system and software requirements verification, and evaluation of the

initial test plan and the SIV&V test plan. This phased approach

accomplishes additional strategic tasks more or less as follows:

o Inputs from Concept Development Phase plus those listed
above.

o Initial steps involve verifying the operational, functional,
performance, and program requirements, and assessing and
racking the critical functions including the use of SIV&V
requirements tracking database or tool.

o Plans and planning factors are evaluated to ensure that SIV&V
works in lock step with the development team.

o Evaluate the engineering trades to ensure feasibility and
completeness of the requirements documents, which can be
measured quantitatively.

o Examine anticipated behaviors and performance needs of the
system and its software to develop initial Measures of
Performance (MOPs).

• The System Specification is verified and analyzed for completeness,

consistency, testability, correctness, understandability, and feasibility.

If a System Segment Design Document (SSDD) is produced, it is

verified as well.

• Prototypes or models of the system architecture are evaluated.

• SIV&V participates in the System Design Review (SDR) and Critical

Design Reviews (CDR).

• SIV&V assesses the development standards and guidelines used.

This includes review of the draft and final Software Development Plan

(SDP).

47

• During this time, program data collection begins in earnest and feeds

the SIV&V status report. Early metrics typically include requirements

stability and adequacy. Risk tracking begins and the highest risks

items are routinely monitored. SIV&V program status and performance

metrics augment the status reporting.

• Following the SDR and the functional base-lining of the System

Specification, SIV&V emphasis shifts to software requirements and to

the extent necessary, hardware requirements.

• As the interface definitions mature, SIV&V reviews and evaluates the

Interface Requirements Specification (IRS) and Interface Control

Document (ICD). Agreement between these documents and the

SSDD is vital.

• The allocation of functions and requirements to Hardware

Configuration Items (HWCIs) and Software Items (SIs) is verified to

provide the foundation for in-depth verification of each SRS for each

SI.

• SIV&V participates in the Software Specification Review (SSR) to

ensure that each CSCI is ready to transition into the architectural

design.

• It is here that analytical methods, tools, and techniques are used

effectively to evaluate and verify the requirements.

• Hardware, support software, and tools selected for the Software

Engineering Environment (SEE) are evaluated and recommendations

are provided.

• Special emphasis is placed on critical software issues.

48

Figure 9. SIV&V Battle Rhythm Requirements Phase (Lewis 1998)

4. Design Phase
The Design Phase activity is conducted by reviewing the software design

products (e.g., object models, sequence diagrams, algorithm descriptions, design

specifications, etc.) of each software baseline build and evaluating the products

for adherence to software requirements. The design products (e.g. Software

Design Documents (SDDs)] are also analyzed for consistency, completeness,

and correctness with respect to the system, software, and interface

specifications. Software problems identified in the Design Analysis activity are

documented as risks, and comments are provided to the developer for

adjudication. Typically, the Design Phase is multifaceted, meaning that it

consists of a Preliminary Design Phase or Architectural Design Phase and a

Detailed Design Phase. These facets and SIV&Vs input/output processes are

discussed below (Lewis 1998).

- Concept Study Reports
- High-Level Architecture of System
- Established Concepts of Need, Requirements,
and Objectives
- Identified Technology Requirements
- Initial Risk Assessment
- Initiate Configuration Management (CM)
Controls
- System Requirements Trade Studies

- Specifications Tree & Work Breakdown
Structure (WBS) Final
- Approved System Specification (SS)
- Approved System/Segment Design
Documentation (SSDD)
- Any Prototype Evaluated
- Approved CSCI Software Requirement
Specification (SRS)
- Approved SEMP
- Interface Requirements Specification (IRS)
Complete
- Critical requirements Identified
- Results of Systems Design Review (SDR)
and Software Specification Review (SSR)

SIV&V Battle Rhythm
(Requirements Phase)

Input – Entrance Criteria Output – Exit Criteria

49

a. Architecture Design
Architectural design verification gives attention to the soundness

and completeness of the software design, interface design, and traceability of the

requirements into the design. The following tasks are typical of this phase (Lewis

1998):

• This process consists of a number of steps that evaluate the

allocation of functions and capabilities especially centered on

critical functions, a thorough examination of the architectural

design and its documentation in the preliminary Software

Design Document (SDD), and verification of the system

architecture.

• The SIV&V team evaluates the fidelity of the design to ensure

adequacy of algorithms given the performance expected from

the elected platform. This is accompanied by analysis of the

operating timeline estimates.

• The architectural design is evaluated for its completeness,

modularity, efficiency, complexity, stability, and

understandability.

• The interface requirements are tracked from the Interface

Requirements Specifications (IRS) into the SIs and HWCIs and

into the Interface Control Document (ICD). The interfaces are

evaluated for completeness, consistency, correctness, and

ability to implement.

• Externally supplied data is assessed for adequacy and

completeness, and is certified, when necessary.

• Internal data is analyzed using data flows generated by selected

software tools. A data dictionary is produced by the developer,

which is evaluated by SIV&V for accuracy and completeness.

• SIV&V proven methods, tools, and techniques are selected and

used for analysis and evaluation.

50

• Test requirements are extracted and traced to the developer’s

Software and Hardware Test Plans (STP and HTP). This

ensures adequacy of the test plans and also provides data for

development of the SIV&V Test Plans when independent testing

is required. Many systems today are networked and require

extensive ‘distributed’ test environments; it is increasingly

difficult and cost prohibitive to attempt to exactly replicate these

facilities for SIV&V. In such cases, ‘dual-use’ testing is

encouraged in which SIV&V and developers share facilities and

conduct joint testing.

• User requirements are verified, and safety factors and the

Failure Mode Effects Analysis (FMEA) are evaluated.

• Change requests to the design and requirements are tracked,

coordinated, and evaluated for impact to the design

documentation.

• The architectural design portion of the SDD is thoroughly

evaluated for completeness, consistency, traceability,

correctness, implement-ability, and testability.

• SIV&V participates in the Architectural or Preliminary Design

Review (ADR or PDR).

• Human engineering factors, command and control features, and

functions are evaluated to ensure adequate user and operator

interaction.

• All critical functions are traced, verified, and documented in the

SIV&V requirements tracing database.

• The issue Tracking Log tracks the status of all essential open

issues.

• The SIV&V Test Plan is drafted and may become an extension

of the developer’s Software Test Plan (STP), if dual-use (joint)

testing is conducted.

51

• Development changes that occur during this phase are

immediately fed into the appropriate verification activity and

assessed for their impact.

Figure 10. SIV&V Battle Rhythm Architectural Design Phase (Lewis 1998)

b. Detailed Design
Detailed design verification examines the detailed design of the

software for completeness, consistency, logical and functional correctness,

implement-ability, and feasibility and typically addresses the following tasks

(Lewis 1998):

• SIV&V examines and assesses the design for efficiency,

modularity, fidelity, complexity, testability, clarity, flexibility, and

stability.

• Metrics and performance indicators are collected, assessed,

and reported back to the customer on program maturity and

potential delinquencies.

- Draft Data Requirements
- System Performance Specified
- System Level Trade Studies Complete
- Approved Systems Specifications (SS) or Prime
- Item Development Specification (PIDS) and
System Segment Design Document (SSDD)
- Identify Critical Functions
- Approved Software Requirements Specification
(SRSs)
- Approved Interface Requirements Specification)
IRS(s)
- Functional Allocations Complete
- Draft Architecture Language

- Approved Interface Control Document
(ICD)
- Preliminary Software Design Documents
(SDD) Complete
- Critical Functions Listed
- Architecture Complete
- Operating Timelines
- Behavioral Analysis
- Initial Timing & Sizing Estimates
- Safety Factors and Failure Mode Effects
Analysis (FEMA) Assessed
- Risk Management Initiated
- Preliminary Design Review
(PDR)/Architectural Design Review (ADR)
Issues Tracked to Closure

SIV&V Battle Rhythm
(Architectural Design Phase)

Input – Entrance Criteria Output – Exit Criteria

52

• SIV&V participates in design inspections hosted by the

developer and customer to evaluate the thoroughness and

discipline of the design team; this is especially true when

integrated product teams are used.

• In view of the fact that detailed design of complex systems is

invariably supported by software design tools, SIV&V evaluates

them and identifies, selects, and uses portions of the

developer’s tool set to ensure repeatability; additionally,

specially chosen complementary SIV&V tools are used to

enhance analysis and error detection; and further investigate

suspect designs.

• SIV&V performs several verification activities in parallel, that

include hardware/software mapping; verification of key

algorithms; analysis of control flow, schema, and behaviors; and

detailed timing and sizing analysis. Algorithms are selected

based on criticality, complexity, and performance, and are

thoroughly evaluated, often by coding and executing them on a

tool-bearing host to determine their accuracy, performance, and

suitability.

• The Interface Design Document (IDD) and Interface Control

Document (ICD) are evaluated for consistency, completeness,

and accuracy. This includes hardware interface assessment to

ensure integrity of the design.

• SIV&V verifies the developer’s Software Test Descriptions

(STDs) and Software Test Plans (STPs). This process ensures

adequacy of both the development and SIV&V test programs to

fully verify all critical requirements and functions. When dual-

use (joint) testing is employed, SIV&V feeds its discrete test

requirements, test cases, and data collection needs to the

developer for inclusion in its testing. This technique is used

53

when it is impractical, too expensive, or impossible to precisely

replicate the development configuration.

• SIV&V thoroughly evaluates the user and operator interfaces

and command and control interactions, and often participates in

safety assessments of the software.

• Execution time budgets and task schedules are assessed to

estimate the adequacy of operating margins.

• SIV&V verifies the completed SDDs based on virtually all

detailed design activities discussed in this section.

• Continue verifying and tracking critical functions using the

SIV&V requirements tracking database and critical function list.

• SIV&V evaluates the visualization and the Graphical User

Interfaces (GUIs) proposed for use or prototyped for the

system—screens, human machine interfaces, controls, use of

color, mimics, and so forth.

• SIV&V participates in hardware evaluation and design to benefit

the software design verification. A strong understanding of the

hardware is essential to software SIV&V.

Figure 11. SIV&V Battle Rhythm Detailed Design Phase (Lewis 1998)

- A rch itectural D esign C om plete per Softw are D esign
D ocum ent (S D D)s and T ool O utpu t
- P relim inary T im ing and S iz ing D ata
- D esign T rade S tud ies
- C om m ercial O ff-T he-Shelf (C O TS)/G O T S Selection
- Input/O utput (I/O) D ata S ources/D efinitions
- D evelopm ent E nv ironm ent Softw are E ngineering
Environm ent (SE E) E stab lished
- D raft In terface D esign
- E x ternal D esign C onstrain ts
- Functional and P erform ance R equirem ents D atabase
(D B)

- D etailed D esigns C om plete per C ritical
D esign R eview (C D R)/D etailed D esign
R eview (D D R)
- A greem en t on C ritical Functions
- C om plete Softw are D esign D ocum ents
(SD D s) for each C om puter Softw are
C onfiguration Item (C SC I)/Softw are Item (S I)
- C om plete In terface D esign D ocum ent (ID D)
- C om plete D atabase D esign D ocum ent
(D B D D)
- V erified O perating T im elines
- R isk M anagem ent Perform ed
- C losure on A ll C ritica l D esign R eview
(C D R)/(D etailed D esign R eview (D D R)
Issues
- A pproval fo r C oding

S IV & V B attle R hythm
(D eta iled D es ign P hase)

Input – E ntrance C rite ria O utput – E xit C rite ria

54

5. Code and Development Testing Phase
Code verification is commonly a three-phase activity used with most

development practices. This forms a suitable way of viewing the evolution of

code from the Computer Software Unit (CSU) (smallest compliable entities), to

the Computer Software Component (CSC) (collections of units that have

common or supporting functions), to Software Item (SI) level and supports the

testing. The Institute of Electrical and Electronics Engineers (IEEE) J-STD-016

and others handle these steps as two parts, in which “Software Units (SUs)”

comprise everything below the SI level. Despite the number of discrete levels of

coding the SW goes through, this pattern depicts the growth from small chunks of

code to components (tasks and packages) and finally to complete Sis. The

following tasks are typical of this phase (Lewis 1998):

• SIV&V typically begins code verification at the level where execution of

the code can occur. It is often too hard to force a CSU to execute and

do something representative, so this level of verification is usually

avoided as it is too costly and time consuming. The converse is true at

the CSC, package, and SI level. Beginning with CSC, the code can

usually perform one or more complete tasks, and therefore, can be

evaluated and verified in a meaningful way. There are many variations

to this approach resulting from differences in software languages,

developer preferences, maturity of the software, stability of the

requirements, and the like.

• One of SIV&V’s favored approaches is to use a code analyzer (i.e.

McCabe, FlexeLint, and Vector Cast) on CSCs and SIs. These tools

find a large number of the embedded coding errors, and dead code,

inspect the code for standards and rules violations, uncover bad

coding practices defined by industry (i.e. Carnegie Mellon Software

Engineering Institute), and semantic errors. These tools are able to

very quickly calculate the complexity of code, and help point the SIV&V

analyst to the hot spots to make assessments and look for possible

55

problems. These tools can support static and dynamic execution of

software on most platforms. A real plus is that these tools are very fast

and yield consistent results after repeated runs, something human

analysts cannot always do.

• In addition to the code integrity checks described, SIV&V completes

the verification of the SDDs, IDD, ICD, and the design tools’ outputs to

ensure that the designs, databases, and interface documents match

the code.

• Often times, SIV&V participates in code inspection, peer reviews, and

walk-throughs.

• SIV&V ensures that the standards and coding practices described in

the developer’s Software Development Plan (SDP) are being followed.

• SIV&V evaluates the adequacy of the developer’s test procedures and

the test facilities and environment. This includes simulations, drivers,

simulators, and database analysis tools.

• SIV&V then generates test procedures and conducts independent

testing (i.e. “white box/black box” testing) to complement testing being

performed by the developer, or as previously described, may input its

requirements into the developer’s STD for dual use testing.

• SIV&V continues tracking and focusing on the critical functions to

ensure the highest possible degree of safety, reliability, and user and

mission responsiveness.

• This phase provides an opportunity to verify the networking for the test

environment to support SIV&V. This is especially important when the

developer and SIV&V teams are separated geographically.

• Software change activity is typically heaviest during this phase and the

next phase, stressing the Configuration Management (CM), problem

tracking, and reporting systems.

56

Figure 12. SIV&V Battle Rhythm Code and Development Testing Phase (Lewis
1998)

6. Hardware and Software Integration Phase
Hardware and Software Integration (HSI) verification testing has taken a

major shift away from the pure development environment to the integration

environment. Here the software is typically developed on Functional Equivalent

Units (FEUs) and then moved to the actual hardware laboratory for integration,

and finally installed on the Field Unit Equipped (FUE) hardware for eventual use.

HSI usually means that a different organization assumes the responsibility for the

software products. It also means that the software will run on actual mission

hardware or on precise hardware equivalents for the first time. The following

tasks are typical of this phase (Lewis 1998):

• SIV&V begins this phase by reviewing the integration and test planning

documents. These typically describe the hardware environment in

- Critical Design Review (CDR)/Detailed Design
Review (DDR)
- Software Design Documents (SDDs) Complete
- Database Design Document (DBDD) Complete
- Interface Design Review (IDD) Complete
- Interface Control Document (ICD) Complete
- Detailed Design Compared to Code
- Software Testing Environment Available
- Developer Tests & Results Shared

- Computer Software Unit (CSU), Computer
Software Component (CSC), Computer
Software Configuration Item (CSCI) or
Unit/Item Requirements Verified
- Updated Allocated Baseline—Code and
Documentation
- All Critical Requirements Traced to Code
Level
- Approved Test Procedures
- Computer Software Unit (CSU), SCS
&SCSI or Unit/Item Test Results
- Test Readiness Review (TRR) for each
Computer Software Configuration Item
(CSCI)/Item
- Software Statistics

SIV&V Battle Rhythm
(Code & Development Testing

Phase)
Input – Entrance Criteria Output – Exit Criteria

57

which the software is to be integrated. Second, SIV&V reviews the

developer’s test documentation and reports to determine where to best

focus SIV&V resources.

• SIV&V monitors the integration process and testing, and given the

opportunity, performs or shares independent integration level testing to

confirm the results reported by the integrator, and explore new facets

and behaviors of the software, with special emphases on critical

functions to ensure their adequacy, correctness, and integrity.

• In addition to performing SIV&V testing, an assessment is made of the

adequacy and completeness of developer and SIV&V test facilities and

support environments.

• SIV&V selects and uses methods, tools, and techniques for analysis

and evaluation.

• An extremely important activity is the verification and analysis of the

Software Product Specification (one per SI) including the source code.

This is usually performed in preparation for the Functional

Configuration Audit (FCA).

• The Functional Configuration Audit (FCA) is usually held when

hardware and software integration is complete and the SI satisfies all

of the requirements levied upon them in the Software Requirement

Specifications (SRSs). However, this audit can, in some cases, be

postponed until the next phase, following the Formal Qualification

Tests (FQTs) and/or occasionally following a series of flight, and live

tests, if required by the contract.

• In any case, product base-lining cannot take place until these audits

have been held and all essential open items are closed, otherwise

deferred, or waived.

• SIV&V also confirms timing, sizing, loading, and operating margins of

the software.

58

• SIV&V participates in the component Test Readiness Review (TRR) or

Flight Readiness Review (FRR), if held in this phase, and reports the

results.

• Test beds are used extensively with simulations to ensure that the

integrated parts of the system can meet their stated performance

requirements. Interfaces are tested exhaustively (e.g. error seeding,

stress testing, “what if” scenarios, and the like) to ensure that they are

able to support worst case loading and quality criteria.

• Limited amounts of operational testing are performed to ensure that

key algorithms and functions meet their deadlines and accuracy

requirements. These tests focus on critical functions, Measures Of

Performance (MOPs), and Measures Of Effectiveness (MOEs) that are

primary factors in the success or failure of future systems test.

Figure 13. SIV&V Battle Rhythm Hardware and Software Integration Phase
(Lewis 1998)

- Developer STPs and STDs
- Source & Executable Code
- Inputs/Outputs Databases
- Results of Test Readiness Review (TRR)
- Integration Test Plans and Description
(ITPs & ITDs)
- Required Hardware Available
- Configuration Management Records on
Software Anomalies/Deficiencies

- Functional, Performance, and Ops
Requirements Met Measure of Performance
(MOPs) and Measurement of Effectiveness
(MOEs)
- Updates to Allocated Baseline
- SPSs Audited and Verified
- Human System Integration (HSI) Complete
- All Critical Requirements Evaluated and
Verified
- STDs and ITDs Updated
- Results of Reviews and Audits
- Archived Test Results
- Flight Readiness Review Held, if Required

SIV&V Battle Rhythm
(Hardware & Software Integration

Phase)

Input – Entrance Criteria Output – Exit Criteria

59

7. Formal Qualification Phase
Validation is the SIV&V activity associated with the developer’s formal

qualification testing and, in many cases includes flight or live operational

certification of the end item. This aspect of validation is often carried forward into

the next phase. If pre-qualified hardware already exists, formal validation will be

directed only at the software; otherwise, it can involve both hardware and

software. However, SIV&V typically focuses on the software aspects. The

following tasks are typical of this phase (Lewis 1998):

• SIV&V evaluates qualification test suites for completeness,

comprehensiveness, and adequacy. Validation looks back at system

and software requirements, determines adequacy of testing, and

ensures that mission critical requirements are met.

• SIV&V selects and uses proven analysis tools that support the

performance assessment. Then, SIV&V authenticates both the data

and test procedures needed for formal qualification and, hence,

validation.

• Validation is the formal confirmation or proof that the system meets the

user’s expectations, can perform its mission to the effectiveness

specified by the MOPs and MOEs, and that the software is essentially

free of errors and inconsistent behavior that would affect its mission.

In a sense, validation is never complete in that every new use or

application varies some of the parameters that can affect the outcome

or operational integrity of the new system. The objective is to test and

validate beyond the nominal test cases (i.e. off-nominal) at a level such

that the system does not suddenly fail and can maintain performance

even when stressed. Every tester and validator struggles with where

to draw the line to declare and affirm that the system is acceptable for

use and deployment.

• SIV&V analyzes the scenarios and test cases used for testing and

validation to ensure they are sufficient to thoroughly demonstrate the

60

system capabilities in both nominal and off-nominal (stressing or worst

case) situations. Thus, the system is expected to degrade without

failing; therefore, the testers and validators have to know where the

system begins to degrade and what happens as these limits are

exceeded. These behaviors have a great deal to do with whether the

system is acceptable for use or not. The software must be designed to

accomplish these objectives, and validation provides the essential

confirmation.

• SIV&V performs and participates in Logistical Reliability Availability

Maintainability (RAM) testing, and effectiveness evaluation, as required

by the customer. These are usually run over extended periods of time.

• SIV&V compares test results to other real-world sources.

• SIV&V uses Subject Matter Experts (SMEs) in the technology areas as

evaluators.

• SIV&V participates in the Functional and Physical Configuration Audits

(FCA & PCA), once administered, and evaluates and confirms that all

critical issues have been resolved and closed.

• SIV&V assesses and verifies the training of operators and users, if

requested by the customer.

• All software changes occurring during the period are assessed for their

impact on source code and base-lined documentation.

61

Figure 14. SIV&V Battle Rhythm Formal Qualification Phase (Lewis 1998)

8. Operational Readiness Phase
Operational readiness validation is an important SIV&V phase of system

development requiring live fire, flight, or other forms of operational status

validation or other forms of pre-operational checkout in a realistic “situational”

environment. Essentially, Operational Readiness tests and demonstrations take

on the characteristics of the system they support. The following tasks are typical

of this phase (Lewis 1998):

• To accomplish this form of validation, SIV&V evaluates the limitations

and constraints of the system to satisfy all of the operational

requirements and perform all of the necessary tests. SIV&V may work

along side the Operational Test and Evaluation (OT&E) personnel in

performing these tests.

• SIV&V assesses the “situational” test capabilities (environment, test

ranges, test cases, scenarios, targets, behaviors, and so forth) to

- Updates to System and CI Architectures
- Updates to Software Product Specification (SPS)
- Fully Integrated HWCI and CSCIs/SIs Ready for Formal
Verification Testing
- Updates to System Specification (SS) / Prime Item
Development Specification (PIDS) and Software
Requirement Specification (SRS), if required
- Product Baseline
- Functional Configuration Audit (FCA) Results
- Flight Readiness Review (FRR) Results

- Verification of the Functional
Characteristics of all Production and
Procurement Complete
- Passage of Formal Qualification Tests
- Verification of the As-Built Version of
CSCIs Against SRSs, SDDs, IDD and DBDD
- Approval of Software Product Specification
(SPS)s
- All Critical Functions Tested
- Government Approval of Physical
Configuration Audit (PCA) if held
- Establishment of CSCI/SI Product Baseline
- Closure of FCA Open Items

SIV&V Battle Rhythm
(Formal Qualification Phase)

Input – Entrance Criteria Output – Exit Criteria

62

ensure the proper mix of testing, the ability to command and control

the developed system, and general oversight of the operational testing.

• SIV&V serves as an operational expert for this evaluation together with

appropriate tools to support the necessary analysis.

• SIV&V performs a self-assessment based on past and current metrics

that enable a quantitative measure of SIV&V effectiveness. SIV&V

metrics are often compared to similar development metrics to

determine an effectiveness ratio between the subsequent groups.

• All software changes occurring during this phase undergo evaluation

for their impact on source code, design, and documentation.

• An operational test often involves Joint Services and Joint Level

components where SIV&V assesses interoperability among the various

assets that exchange data, status, and operational objectives. SIV&V

participates in these tests when possible and ensures that operational

objectives meet or exceed the system expectations.

Figure 15. SIV&V Battle Rhythm Operational Readiness Phase (Lewis 1998)

- Functional, Allocation and Product Baselines
- Software Product Specification (SPS)s and
Version Release Records
- Test-Approved Test Document
- Results of Functional Configuration Audit
(FCA) and Physical Configuration Audit (PCA)
- Integration Verification Results
- Results of Flight Readiness Review, if required
- Operational Requirements
- Operational Tests Reports

- Results of ORR, if held
- Assessment of Various Operating and
Control Modes, States and Behaviors
- Post-Test Analysis Results
- Effectiveness/Performance Analysis Results
- Operational Capabilities Assessment
- Deficiencies/Anomalies Reported and
Closed

SIV&V Battle Rhythm
(Operational Readiness Phase)

Input – Entrance Criteria Output – Exit Criteria

63

9. Operations and Maintenance Phase
In the Operations and Maintenance (O&M) phase, SIV&V is typically a

scaled-down compressed version of the development and integration phases

mentioned previously. The key drivers for O&M SIV&V are Engineering Change

Proposals (ECPs) and Pre-Planned Product Improvement (P3I) programs.

SIV&V helps to evaluate the impact and magnitude of the proposed changes and

determines all the requirements, design, code, documents, and tests that are

affected. The following tasks are typical of this phase (Lewis 1998):

• Based on the level and types of changes, SIV&V identifies, selects,

and uses an appropriate mix of tools, techniques, and methods to

optimize as much as possible the analysis and evaluation of the

affected parts of the software and/or system.

• SIV&V is expected to develop a tailored or scaled SIV&V plan, test

plan, and cost estimate as appropriate for the size and schedule of the

proposed effort.

• SIV&V evaluates the changes for completeness, consistency,

correctness, impacts to other parts of the system, and feasibility.

• Typically, SIV&V re-verifies previously base-lined documents and

code, examines the support data and documentation such as CASE

and analytical tool outputs for completeness, accuracy, correctness,

and consistency.

• SIV&V performs testing in accordance with the revised documentation

(i.e. Software Test Plans and Test Descriptions).

• SIV&V participates in all design reviews and audits needed to assess

and evaluate the changed products at each phase.

• Once the product has evolved to the stage where formal re-

qualification is needed, SIV&V participates in the TRR, FCA/PCA, and

FRR, as required by the customer.

• All software changes occurring during this period are evaluated for

their impacts on source code and base-lined documentation.

64

• This phase usually covers scaled-down versions of many of the life

cycle phases and, therefore, places schedule constraints on all parties:

customer, SIV&V, developers, and integrators. However, SIV&V’s

ability to meet any program constraints or surge capabilities is one of

its major strengths.

Figure 16. SIV&V Battle Rhythm Operations and Maintenance Phase (Lewis
1998)

D. SIV&V SUPPORTING CASE TOOLS

1. Introduction (I-Logix.com; Telelogics; Spector; Rational;
Zambrana)

Computer-Aided Software Engineering Tools (CASE) are supplemental

programs that assist in automating software-design and development processes.

For example modeling tools, compilers, structure editors, and source-coded

systems are forms of CASE tools. CASE tools relieve the programmers from

having to work detailed tasks related to hardware, thus allowing them to

concentrate on higher-level software system abstractions.

- All Baseline Documentation Impacted by
Changes
- Source and Executable Code
- Test Plan, Descriptions, Results and Reports
- Integration Test Results
- Configuration Management Records
- Engineering Change Proposals and Other
Change Requests
- Any Existing Impact Analysis
- New/Changed Requirements

- Rebaselining of All Affected Previously
Baselined Documentation
- Rebaselining of Source Code
- Results of Development and Integration
Testing
- Functional Configuration Audit and Physical
Configuration Audit Results
- Requalification of Hardware Configuration
Item and Computer Software Configuration
Item /Software Item
- Flight Readiness Review and Operational
Readiness Review Results, if required
- Closure of Open Items, if required
- Complete Configuration Management
Records

SIV&V Battle Rhythm
(Operations and Maintenance

Phase)

Input – Entrance Criteria Output – Exit Criteria

65

The evolutionary process of CASE tools has progressed to specific tools

of software development that assist in defining and validating particular aspects

of software system design. Current generations of CASE tools are whole

systems within themselves, consisting of multiple tools that assist software teams

with designing software systems in a logical progressive pattern.

There are three types of CASE Tools: Design, Hybrids, and Build

environment tools. By definition, CASE Design Tools assist diversified cells of

engineers with software system specification development. Design Tools further

assist engineers in code stubs, documentation, and the automated writing of

frameworks that are incorporated into the developer’s program or routine. The

Unified Modeling Language (UML), initially supported by Grady Booch, Jim

Rumbaugh, and Ivar Jacobson, is another language utilized by CASE Design

Tools. The development of UMLs has revolutionized the ability of software to

produce system specifications that are easily incorporated into a maintainable

and productive code. The most promising aspect of CASE Design Tools is that

some of them can assist in the design of almost unlimited specifications from

document development to embedded systems utilized in military Battle

Management software.

CASE Build Tools assist diversified cells of engineers in managing and

composing the release of sophisticated software packages; this aids developers

in tracking executables, objects, and combinations of sources encompassed

within the developed system.

Hybrid Tools are newly developed CASE Tools that combine existing

support tools with web services to produce a distributed flexible system capable

of managing various styles within software development stages. Hybrid CASE

Tools are also capable of incorporating new software enhancements with a

minimum effort in labor. “Sourceforce” and “Collab.net” are perfect examples of

Hybrid CASE Tools, all of which follow strict integration and design processes.

Further, they have the capability to analyze the what, when, and where of the

software development process.

66

The IV&V change agent must acquire the appropriate software tools to

evaluate and address each phase of the validation. Developing a large software

tool library is useless unless all the technical personnel are highly proficient with

the tools and their components.

2. Requirements
Requirements are the compilation of specifications and activities

developed by the user or customer in an attempt to lay the guidelines for the

architecture of a developing system. In the software community, a holistic

approach is used to address requirements. Once the project’s requirements are

developed and accepted, they are prioritized with respect to maximizing quality,

maintainability, and ease-of-tracking of the software system. Therefore,

elicitation of software requirements is a key factor in the development of new

software systems. Two important factors used to define and develop software

requirements are consistency and uniformity, which are essential to reducing

system costs (Telelogic).

3. Design
The system software design phase is considered transitional, in that it

translates the software designers’ concepts, notions and ideas into a semi-

structured architecture and resourced entity. The design phase is also iterative

in that it develops the allocation of requirements into a specific design. Software

design is partitioned into two sub-functions, the system design and the software

design. System design is related to hardware development, and software design

is related to man-in-the-loop interfaces. Critical resources and requirements are

allocated during the software design phase, and questions are answered

pertaining to the security of data, maintenance of hardware, software tools and

software databases. Examples of software case tools utilized in the design

phase are “Rational Rose,” “Rhapsody,” “McCabe,” and “Klockwork” (Spector; I-

Logix; Rational; Klocwork).]

4. Code
Coding is defined as translating the user’s requirements into a language

that allows the computer to execute those requirements. Since “requirements

67

creep” is a consistent issue, coding must be able to change with requirements.

Thus, the logical assumption that requirements are clarified and finalized during

the coding process is in fact rarely true for today’s complex systems. Typically,

the design requirements are immature as the coding process is started. Given

this dilemma, the programmer must try and achieve four goals during the coding

process. First, quality, as the most important goal in the coding process, must be

emphasized from the beginning of the coding process to assure that quality is

incorporated during the maintenance and test phases of software development.

Second, uniform and consistent guidelines and processes are required to assure

that readable codes and production of logical flows occur. Third, coding

documentation must be in a form that is easy to understand and maintain.

Programmers dread the maintenance of non-standard codes as extreme efforts

are required to maintain these codes. Non-standard codes typically result in

negligence of code maintenance. Finally, the documentation is a living document

that must be iteratively updated to remain relevant. As the code matures the

documentation must become increasingly detailed because the documentation

forms the foundation for the operation and maintenance of the software in a cost

and time effective manner (Shula; Badeaux).

5. Tracking Database
A software database is an internally developed or Commercial-Off-The-

Shelf (COTS) program that tracks errors or bugs from initial to final testing of the

software. The basic goals of utilizing a tracking database tool are to find errors,

assist in correcting errors, and annotate the corrections using the report function

of the database for future reference. The bug-tracking database is a time, cost,

and labor saving tool that capitalizes on the tracking and reporting functions of

the software. It also enhances the programmer’s abilities to discover, check, and

correct errors before the software system enters into the production phase of the

life cycle (Shula).

6. Rate Monotonic Analysis (RMA)
Rate Monotonic Analysis (RMA) algorithms were originally developed to

analyze the scheduling of periodic tasks to an associated periodic request rate.

68

The basic function of RMA is to prioritize tasks according to the period in which

they occur. In essence, tasks with shorter-time periods are assigned a higher

priority, and tasks requiring longer-time periods are assigned a lower priority. In

order to implement the RMA certain assumptions are made, for instance,

aperiodic tasks in a system routine are considered special, and will displace

periodic tasks in the execute routine, or there are consistent run-times for each

task, or tasks are not dependent on the completion of other tasks. Task

deadlines are consistently designed and noted at the beginning of the next

period. Software systems benefit from using RMA by retrieving real-time task

conditions and analyzing the results statically to determine whether or not task

deadlines are executed, and whether static scheduling test results fall within the

boundaries of the system’s rare monotonic assumptions (Forman; Klien).

7. Security Assessment (Klocwork; Ghosh; Gilliam; Laliberte)
Software applications that resident on desktops, mainframes, and servers

are vulnerable to illegal hacking and attacks. Vulnerabilities in computer

software arise from a number of oversights in programming and many times are

tracked back to poor software development techniques. Unsecured network links

and newly developed methods of attacks contribute to security vulnerabilities.

Security Assessment Tools (SAT) utilize current assessment methodologies to

identify security risks in resident and networked software. Vulnerabilities are

tested in the client’s environment, assessed, and prioritized according to the

estimated severity of effects. Another approach to assessing security is by

exploiting obvious vulnerabilities in break-in attempts, and assessing whether or

not the attempts are successful. The routine that allowed the break-in is patched

and the security program searches other areas of vulnerabilities. This method is

known as penetrate and patch.

Certifying security assessments occur at the component and system level.

Assessing and certifying at the component level evaluates whether that

component operates as designed in the operating environment without allowing

dangerous penetrations. At the system level, software is evaluated at the total

69

package level for effectiveness against Trojan horses or viruses and finally

assessed by SATs and individual evaluations.

Table 7. Recommended SIV&V Tool Suite

TOOL Requirements Design Coding Tracking
Database

RMA Security
Assessment

DOORs X

RTM X

Rational
Rose

X X

Rhapsody X

McCabe X X

Klockwork X X X

EXCEL
Spreadsheets

 X

Flaw Finder X

Microsoft
Access

 X

Timewiz X

Doves X

E. IMPACTS OF ACQUISITION REFORM
Acquisition reform within the Government has led to an increase in the use

of performance-based specifications. This approach has some advantages for

procurement, but creates great difficulties for SIV&V. The main effect is that the

software may be pushed to a lower Work Breakdown Structure (WBS) level that

is not visible to the Government. Software and software products do not appear

in the upper levels of the WBS. Therefore, they may not be delivered for review,

reported on schedules to the Government, or appear in cost breakouts. This

70

situation makes software tracking, oversight, and SIV&V almost impossible. The

response from the contractor concerning this is that the Government is welcome

to come to their facility to review data using their electronic systems such as

online Software Development Folders (SDFs). Unfortunately, this approach does

not work. Getting access to contractor facilities can be very difficult (badges,

escorts, and so forth), and obtaining accounts on contractor computer systems

can be extremely difficult. These issues are orders of magnitude more difficult, if

not impossible, for Government support contractors due to company policies,

non-disclosure agreements, proprietary issues, and competition sensitive

caveats. Even if access is obtained, locating the needed data without assistance

is very difficult since the data is often widely dispersed and poorly organized.

The second issue that is often presented is that since the contractor is a

Capability Maturity Model (CMM) Level 3 or higher organization, it is assumed

that Government monitoring, access, and even SIV&V of the software is not

needed. No data or study supports this position. In fact, the CMM promotes

oversight and SIV&V activities. A good Level 3 and above contractor would

generate documents, have oversight and tracking, and provide status; however,

in the present climate of budget cuts, key processes are often tailored out of a

program. Contractor management is fond of saying, “If it is not in the contract,

we don’t have to do it.” Even if the CMM process is followed, Government

access may still be limited.

How can this situation be corrected? The simple truth is that if the

Government wants something, it must be specifically stated in the contract. A

SIV&V contract should be awarded simultaneously with the Prime contract and

should continue throughout the life of the system. Document deliverables must

be identified, and provisions for providing SIV&V access to early release and

draft documents must be included. Schedule and cost reporting requirements

must include software elements. And finally, contractor support of SIV&V

activities must be indicated. Adding SIV&V into a program late in the

development cycle dramatically reduces the effectiveness and ROI of SIV&V.

71

In a similar vein, contractor proprietary information creates great barriers

to SIV&V activities. The contractor indicates that using an internally-developed

proprietary product will save the Government money. However, this is rarely the

case. Instead, proprietary labels can be used to limit Government visibility into

their activities. As a result, documents cannot be obtained, source code cannot

be inspected, and other contractors cannot be involved. Often the contractor will

reuse one small module within a large new development, yet declare the entire

product proprietary. Similarly, a document may contain one paragraph of

proprietary information, yet every page of the document is marked proprietary.

Non-disclosure agreements are difficult to implement and do not fully solve the

problem. Challenging these cases is very difficult since it immediately involves

legal groups which are costly in both dollars and schedule. Proper marking of

proprietary information and products to the minimum applicable object, and

minimizing use of proprietary products can help maximize the ROI on SIV&V. In

addition, all proprietary items deemed necessary must be fully defined with

supporting rationale during the proposal period. In some areas, the Government

should request a non-proprietary solution so that Government ownership and

reuse can be obtained. Scrutiny must also occur during the contract’s life to

make sure that additional proprietary items do not appear. These measures

protect both the contractor’s and Government’s rights to obtain a fair product

while allowing SIV&V to occur to the maximum extent possible.

F. KEYS TO SUCCESSFUL SIV&V
To maximize ROI, the following key elements, that are lessons learned

from SED participation in multiple software development and software SIV&V

efforts during the past decade, should be utilized.

1) Government Program Managers (PMs) should plan for SIV&V to be

included in the initial phases of a new development program in order to properly

plan for and execute a comprehensive SIV&V effort. A significant phase of

SIV&V occurs during the requirements generation process, from which SIV&V

ensures that the necessary system requirements/capabilities are established to

72

quantify the desired performance of the new system. Many uninformed PMs

mistakenly assume that SIV&V does not need to be included until the software

implementation is complete, thereby limiting SIV&V to only a software test role.

By being involved early in the software development cycle, SIV&V is more

knowledgeable about the software products (documents, requirements, and the

like) and capabilities of the system, which will result in a more thorough SIV&V

effort, particularly during software testing.

2) Software developed under capabilities-based program acquisition

strategies are more difficult to verify and validate. The program emphasis on

capabilities, rather than requirements, results in the SIV&V organization

delineating between the necessary software, hardware, and personnel

capabilities as part of the overall system’s capability. Most system capabilities

require a system-level test or analysis in order to verify and validate, which

implies that the SIV&V organization should have access to the overall system

assets and/or system data. Such access is usually more difficult to obtain from a

cost and schedule perspective.

3) SIV&V funding should be managed separately from the organization

managing the software development and other software support functions. Such

separation helps ensure that the SIV&V effort does not suffer financially from

software budget reductions and/or cost overruns by the Prime Contractor.

4) The Integrated Product Team (IPT) concept can make SIV&V difficult.

If SIV&V is properly included as part of the IPT, and the IPT lead is the Prime

Contractor, then the SIV&V organization has due allegiance to the Prime

Contractor, in addition to the Government. Relationships between the

Government, SIV&V, and the Prime Contractor need to be partnered and agreed

upon prior to the IPT launch.

5) The SIV&V organization must be given necessary access to the

software-related materials (code, data, documentation, and the like) required to

perform SIV&V. The Government must ensure that the Prime Contractor agrees

73

with such access. It is best if this agreement is established in a written document

such as the Prime Contractor’s Scope of Work (SOW) or Software Development

Plan (SDP). The Government should be prepared to compensate the Prime

Contractor for any personnel support associated with responding to the SIV&V’s

requests for information. This support should not be an additional cost; it should

be included as part of the Prime Contractor’s contract within the SOW.

6) The use of the SEI CMM does not eliminate the need for SIV&V. A

Software Development Organization (SDO) can have a high CMM rating but still

experience software problems. Some SDOs may choose to sidestep approved

processes and procedures in an attempt to cut costs or save schedule. The

SIV&V organization is present to ensure that:

• The software is being built right.
• The right software is being built.

7) The SIV&V contract should be awarded simultaneously with the Prime

contract and should continue through the life of the system. SIV&V involvement

should begin at the beginning of the requirements stage so that SIV&V can

impact the maximum number of requirement errors during the requirements

phase when the cost savings are greatest. In addition, SIV&V subject matter

experts are developed concurrently with developer experts. Therefore, the

customer has two sources of expertise. Also, the developer can use the SIV&V

team as a source of expertise during times of personnel turn-over and growth,

and when it is more efficient to rely on SIV&V expertise rather than impact the

development schedule. This also positions the SIV&V team to continue

functioning as SIV&V through Post-Deployment Software Support (PDSS) or to

“be handed” the system for maintenance once it no longer becomes cost-

effective to the developer.

8) The SIV&V team should report directly to the same Government Point

of Contact (POC) as the developer. This ensures that the Government can

manage the relationship between the developer and SIV&V team, and make

certain that the relationship is supportive rather than adversarial. In addition, the

74

Government customer has direct access to all sources of information, which can

be helpful in times of disparity. This also enforces the independence of SIV&V.

9) SIV&V must be built into the contract vehicle of the developer. The

contract should provide for SIV&V to happen “in-phase” or concurrently. Draft

documents and build deliverables should be made available to the SIV&V team.

Also, SIV&V should be involved during the development and testing cycle. This

allows errors to be found as quickly and efficiently as possible, and corrected in-

phase as often as possible, which dramatically decreases the cost to fix findings.

“In-phase” SIV&V also removes some of the adversarial relationship between the

developer and SIV&V because there is less cost and schedule penalty for errors

found, since they are more likely to be addressed in the earliest phase possible.

A close relationship of trust and respect must be established for the SIV&V team

to be involved at this level. The SIV&V team should be viewed as a reliable and

cost-effective resource by the developer.

10) The contract should state that source code will be available to the

SIV&V team. Source code allows the SIV&V team to inspect algorithms and

establish test cases that might otherwise go un-inspected or un-tested. It also

allows the SIV&V team to test hard-coded values and make use of commercial

source analysis tools such as McCabe and VectorCast.

11) SIV&V should be given a scope outside of “classical” SIV&V. The

“independence” in SIV&V gives it a natural tendency to excel in areas such as,

safety analysis, “what if” test scenarios, and case studies. The SIV&V team

should use the developer’s tools to ensure “apples-to-apples” results, but also

should use or develop test and analysis tools outside of those used by the

developer. The SIV&V team should be scoped to generate test cases to stress

the system in unique and original ways. The SIV&V team should also be scoped

to analyze test data using all resources available to spot as many anomalies as

possible.

75

12) Often, software development requirements are considered too late in

the System Development process. System engineering, historically, has focused

on hardware capability and availability. Hardware requirements and design

typically drive the System Development effort and software often ends up as an

afterthought that must operate with given hardware restrictions. Software is often

considered not to be a critical component of System Engineering. Systems that

are considered to be software-intensive typically have limited staffing (less than

10% of the acquiring organization) to support the system software acquisition.

System Engineering should have both a hardware and a software engineering

focus. If software engineering is not accounted for until late in the overall System

Development process, the software development is reactionary to the hardware

development, which is often counterproductive.

13) SIV&V should include software security assurance as part of its scope.

Due to the constantly increasing threat of software intrusions, the SIV&V effort

should analyze the subject software to identify and help eliminate any potential

software security vulnerabilities or weaknesses. DoD Directive 8570 emphasizes

the importance of information security and places the responsibility of software

security at the respective Product Manager level.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

IV. SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS

A. SUMMARY
Over the past 60 years, software has become the most critical component

of not only every major weapons system employed by the United States Military,

but also serves as the very foundation for the commercial infrastructure (e.g.

financial, transportation, agricultural, utilities, medical, and the like) that we as a

society have come to depend upon as we go about our daily lives. Countless

examples, some of which have been presented in this thesis, of software failures

and the resulting consequences, in lost time, resources, and regrettably

sometimes even lives, abound in today’s world. In this respect, SIV&V can be

viewed as “cheap insurance” against the prospect of catastrophic failures of

fielded software that could possibly have tragic results.

This thesis strives to address this need for better quality, highly reliable

software, by providing the reader with the rationale, guidance, lessons learned,

and the tools necessary to solve these critical and complex software dilemmas.

By utilizing the information provided in this thesis, Government Program

Managers and their commercial counterparts can significantly improve the odds

of fielding successful high-quality reliable software products. It is a process

where by the user can answer the key questions “Are we building the right

thing?” and “Are we building the thing right?” Thus, government users can be

assured with a high level of certainty that their weapons systems will not fail them

during a critical operational moment, and commercial users can rest assured that

the very infrastructure that they have come to depend on to run our modern

society will not collapse.

B. CONCLUSIONS
It is essential that the government agency or commercial entity and their

software engineering support be administratively and technically competent to

effectively implement a quality software IV&V process. Faults and errors made

by software engineering support cause unnecessary expenditures of time and

78

money. The mishandling of these funds results in an enmity towards the

organization that is damaging both politically and institutionally as it affects the

ability of the organization to complete the project. Beginning the project with the

correct complement of skills for the task precludes errors, and ensures significant

system/software errors are surfaced early (Makowsky).

An in-depth analysis has been conducted on why it is important to conduct

Software Independent Verification and Validation. Within this thesis, the team

has documented examples of DoD and non-DoD uses and non uses of SIV&V.

Our research solidifies why it is important to use SI&V prior to deployment of a

new system or product. The Software Engineering Directorate (SED), at the U.S.

Army Aviation and Missile Command (AMCOM) has extensive knowledge in

reviewing and evaluating software development, conducting design reviews, and

software integration and testing for software builds. The example set by SED

can serve as a model for both government and commercial entities that are

determined to improve their software engineering processes through utilization of

SIV&V.

Finally, this thesis serves as a starting point and tutorial for

implementation of the SIV&V process. It provides a listing of suggested sources

of policy and guidance, suggested software computer CASE tools, life cycle

phased descriptions of methods and criteria that can be utilized, and lessons

learned from other programs. It is hoped that the reader will find the information

within these pages to be helpful and inspiring in their pursuit of software

excellence.

C. RECOMMENDATIONS
Software development and SIV&V capabilities have increased significantly

during the past decade due to the expanding role of software in systems and

advances in tools and processes. Software development productivity has

increased due to the availability of integrated Computer-Aided Software

79

Engineering (CASE) toolsets that provide almost seamless transition between

the requirements, design, implementation, and test phases of the development

cycle.

The Software Engineering Directorate (SED), as a Government agency,

possesses a cadre of CASE tools and has an impressive advantage as a SIV&V

resource. SED is a CMM Level IV organization for software development and is

implementing the practices of Team Software Process (TSP), Personal Software

Process (PSP), and Capability Maturity Model – Integrated (CMMI) Level IV.

Therefore, SED’s development expertise lends itself naturally to SIV&V practices.

Using SED as the SIV&V team within the Army specifically, and DoD in general,

minimizes conflicts of interest and proprietary issues, and maximizes

independence. In addition, SED is trusted by the Army Evaluation Center (AEC)

as a resource to perform higher levels of testing, resulting in significant savings

to the Army. Many Army systems have resources located in-house, which make

them available for interoperability testing using both internal and external Army

and DoD network resources. This gives the customer access to an expanded

tool set.

SED is also a cost-effective source of SIV&V as its customers can

leverage cost reductions through existing contract vehicles which utilize onsite

pricing structures and efficient operations. SED is the Life Cycle Center for the

ARMY and SIV&V, and lends itself to the development of experts that can

maintain a system throughout its life cycle.

Each military service should consider establishing a “Center of

Excellence” for SIV&V. These centers would focus on providing SIV&V for each

of the services programs. SED has a broad base of SIV&V experience and

capability that can be made available to other programs and services. NASA has

established such a SIV&V facility in West Virginia. This facility provides SIV&V

support to all NASA centers utilizing both Government and contractor personnel.

This concept of SIV&V “Centers of Excellence” can be extended to the

commercial software industry as well. Similar to the engineering and standards

80

societies that have founded to support various industries like IEEE, ANSI and the

like, these SIV&V “Centers of Excellence” could be organized by industry and/or

criticality of function or service that the software is providing. Examples of

“Centers of Excellence” here would be medical software, aviation software,

nuclear power software, or financial software.

A follow-on concept definition study should be performed to make

recommendations regarding the organization, management, and execution of the

proposed SIV&V “Centers of Excellence.”

D. ANSWERS TO RESEARCH QUESTIONS
1. Primary Research Question
What are the benefits of and rationale for PMOs and others for using

SIV&V?

See Chapter I Sections B and G, Chapter II Sections A, C1, and C3, and

Chapter III Section B.

2. Secondary Research Questions
What software CASE tools are available for software V&V?

See Chapter III, Section D, for a listing of SIV&V CASE Tools.

What key things should be done or considered when conducting SIV&V?

When conducting SIV&V it is important to do or consider the following key

things:

• Document the organizational structures and processes that support

centralized coordination of SIV&V activities and deliverables to achieve

maximum efficiency.

• Standardize SIV&V policies, processes, and products across the

program.

• Identify technical issues and trends in a timely manner for

management focus.

• Integrate and enhance existing SIV&V activities within the SIV&V

community.

81

• Provide leadership insight into SIV&V plans, milestones, and progress.

• Consider how SIV&V will reduce risk of program, element or

component failure due to operational baseline or simulation software

defect(s).

• Develop and test software to ensure high confidence in the system and

component capabilities.

• Ensure software is mature and dependable.

• Ensure SIV&V is executed via the coordinated efforts of all program

directorates and component project offices.

• Ensure SIV&V activities examine the Prime contractor’s software

development plans, processes, and products throughout the software

development lifecycle.

• Ensure early identification of products for delivery, otherwise, your

support may not provide any added benefit.

• Identify coordination requirements and information flow for access to

software, documentation, and data items.

• Ensure early identification of tracking mechanisms and tools as well as

establishing configuration status accounting processes.

What are the SIV&V process steps?

See Chapter III, Applying SIV&V In The Cycle Phase.

Another excellent source is the SEES process. The U. S. Army Aviation

and Missile Command's Missile Research, Development, and Engineering

Center (AMRDEC), Software Engineering Directorate (SED), has developed the

Software Engineering Evaluation System (SEES). The SEES defines the

Independent Verification and Validation (IV&V) tasks, including procedures for

crucial unique software development issues that may be performed by the SED

in support of a Program Management Office (PMO) request to evaluate software

intensive systems. The overall SEES approach, based upon DOD-STD-2167A

[1], is depicted on the Integrated System Diagram (ISD) provided in APPENDIX

82

A. The SEES utilizes analysis methods and practices compatible with the

developer's effort. The results of the SEES methods and practices document the

software engineering accuracy, as well as the deficiencies of the developmental

products.

How has acquisition reform affected SIV&V?

See Chapter III, Section E.

What lessons have been learned from past programs that have utilized

SIV&V?

In most cases, the SIV&V agent tries to maintain their independence while

staying intimately involved in the day-to-day software activities performed by the

prime developer. If this were not the case, the government assessments would

be limited to the developer’s test program only. This concept is a big concern

because the software will be executed in ways that the rule-writers do not fully

cover. Accordingly, the developer decides what, when, where, and how the

software will be tested. The developer also decides what and when test data will

be available for government review. Simply put the SIV&V agent provides

oversight for the developer’s test plans, procedures, testing, and data analysis.

Another short fall or lesson learned is that if SIV&V is not performed then

the Government will have no software risk mitigation capabilities for defect

identification and prevention. This means the government cannot independently

address high-risk areas (interfaces, critical algorithms, and the like), perform any

accelerated software checkout activities or conduct additional regression testing,

or respond to other element IV&V test concerns or findings.

Yet another lesson learned is that there are large risks associated with

utilizing a reduced SIV&V or tailored team. The consequences of this are as

follows:

• Software requirements become program risk items, as there is no

Government insight into missing or incomplete requirements,

traceability or flow down, or requirements certification.

83

• Software design processes become questionable, as there is no

Government contribution to the software design documentation, and no

subject matter experts for software design and implementation

• Software Testing and integration become high-risk items, as there is

no “on-the-ground” insight or test witnessing (regarding status) of

FQTs, internal integration events, or field software check-outs. This is

why SIV&V is declared “cheap insurance” for the project offices, as

they are solely dependent upon SIV&V for solutions to software

problems.

E. RECOMMENDATIONS FOR FURTHER STUDY
Good software should be cost effective, reliable, maintainable, defect free

and above all usable. Presently software possess very few of these attributes.

Software is simply dreadful today and is becoming shoddier all the time. Industry

and the government need to partner to find better ways to educate people both

within government and industry on the necessity of SIV&V and its use.

Accordingly, the software community should continue to develop and evolve the

SIV&V process and tools to keep pace with software evolution and its increasing

complexities. One such area that should be considered for further study is called

Independent Integrated Verification and Validation (I2V2) (Dalrymple). I2V2 is an

evolution of IV&V that suggests that SIV&V agents should become an integral

part of the acquisition process by becoming involved at the very beginning of the

development process. How this would be accomplished and how the SIV&V

agents would retain their objectivity and independence are key questions that

need to be answered. Failure of the software industry to rise to this challenge in

conjunction with the increasingly litigious nature of our society, may very well

lead to expensive litigation as lawyers and special interest groups discover yet

another lucrative commercial enterprise ripe for exploitation.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX: INTEGRATED SYSTEM DIAGRAM (ISD)

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

LIST OF REFERENCES

“AT&T Wireless Blames Software Glitch for Losses.” Consumer Affairs Inc. 23
Jan. 2004. 16 Nov. 2006
<http://consumeraffairs.com/news04/attw_glitch.html>.

Atwood, Jeff. “The Long, Dismal History of Software Project Failure.”

CodingHorror.com. 15 May 2006. 12 Sep. 2006
<http://www.codinghorror.com/blog/archives/000588.html>.

Badeaux, Christie. “Collab Software Coding Standards Guide for Java.” 30 July

2001. 22 Sep. 2006
<http://collaboratory.emsl.pnl.gov/docs/collab/sam/CodeStandards.html>.

Barber, G., J. B. Dabney, and D. Ohi. “Estimating Direct Return on Investments

of Independent Verification and Validation.” Titan Systems Corp. NASA
SIV&V Facility, Fairmont, WV and Department of Systems Engineering,
University of Houston - Clear Lake, Houston, TX.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ:

Prentice-Hall, 1981.

Boehm, Barry W. Software Risk Management. Washington, DC: IEEE

Computer Society Press, 1989.

“Building a better bug-trap.” Economist.com. 19 Jun. 2003. 3 Dec. 2006

<http://www.economist.com/displaystory.cfm?story_id=1841081>.

Callahan, Jack. Verification and Validation: An Editorial Primer. 1997. 19 Nov.

2006 <http://www.icse-conferences.org/1997/news/callahan.html>.

Dalrymple, Edgar and Mike Edwards. Conference Briefing. Independent

Integrated Verification and Validation I2V2. Conference on the Acquisition of
Software-Intensive Systems. 28-30 Jan. 2003. 1 Nov. 2006
<http://www.sei.cmu.edu/programs/acquisition-support/conf/2003-
presentations/edwards.pdf>.

Defense Acquisition University. Advanced Systems Planning, Research,

Development and Engineering (SYS 301) Volume 1. Fort Belvoir, VA: US
Government Printing Office, 2003.

88

Department of the Air Force, Software Technology Support Center. Guidelines
for Successful Acquisition and Management (GSAM) of Software-Intensive
Systems: Weapon Systems Command and Control Systems Management
Information Systems. Version 3.0 May 2000.

“Entries from the Software Failure Hall of Shame, Part 1.” g2zero.com. 6 Jul.

2006. 16 Nov. 2006
<http://www.g2zero.com/2006/07/notable_entries_from_the_softw_1.html>.

“Food For Thought: What is Software Quality Assurance?” Software Quality

Consulting, Inc. Jan. 2005, Volume 2 Number 1. 22 Oct. 2006
<http://www.swqual.com/newsletter/vol2/no1/vol2no1.html>.

Forman, Nate. Class Lecture. Rate Monotonic Theory. University of Texas,

EE382C Class. 20 Mar 2000. 3 Dec. 2006
<www.ece.utexas.edu/~bevans/courses/ee382c/lectures>.

Ghosh, Anup K. and Gary McGraw. “An Approach for Certifying Security in

Software Components.” CIGITAL.com. 3 May 1998. 8 Sep. 2006
<http://www.cigital.com/papers/download/cert.pdf>.

Gilliam, David P., John C. Kelly, John D. Powell, and Matt Bishop. “Development

of a Software Security Assessment Instrument to Reduce Software Security
Risk.” Proceedings of the 10th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (2001): 144-149.
Cambridge, MA, 20-22 Jun. 2001. 23 Sep. 2006
<http://nobs.cs.uc.david.edu> or
<http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proce
edings/&toc=comp/proceedings/wetice/2001/1269/00/1269toc.xml&DOI=10.
1109/ENABL.2001.953404>.

“I-Logix Telelogic RHAPSODY.” ilogix.com. 2006. 10 Jun. 2006

<http://www.ilogix.com/sublevel.aspx?id=284>.

Klein, Mark. “Rate Monotonic Analysis, Software Technology Roadmap.”

Carnegie Mellon University. 10 January 1997. Software Engineering
Institute. 25 Aug. 2006
<http://www.sei.cmu.edu/str/descriptions/rma_body.html>.

“KLOCWORK K7 Products.” klocwork.com. 2006. 22 Sep. 2006

<http://www.klocwork.com/products/klocworkk7.asp>.

Knutson, Charles, and Sam Carmichael. “Safety First: Avoiding Software

Mishaps.” Embedded Systems Programming Magazine. 16 Nov. 2006
<http://www.embedded.com/2000/0011/0011feat1.htm>.

89

Laliberte, Scott. “Security Assessment and Risk Analysis Laboratory.” U.S.
Army Communications-Electronics Life Cycle Management Command,
Software Engineering Center. 9 Sep. 2006
<http://www.sec.army.mil/secweb/facilities_labs/sara_lab.html>.

Lewis, R.O. Independent Verification and Validation (IV&V) Process Chart.

Huntsville, AL: TEC Masters, Inc., 1998.

Lewis, R.O. Independent Verification & Validation: A Life Cycle Engineering

Process for Quality Software. New York: John Wiley & Sons, 1992.

Makowsky, Lawrence C. A Guide to Independent Verification and Validation of

Computer Software (Technical Report, USA-BRDEC-TR//2516). Fort
Belvoir, VA: U. S. Army, Belvoir Research, Development and Engineering
Center, Jun. 1992.

Mann, Charles C. “Why Software Is So Bad.” Technology Review. July/Aug

2002: 33-38. 3 Dec. 2006
<http://moosehead.cis.umassd.edu/cis580/readings/WhySoftwareIsSoBad.p
df>.

Missile Defense Agency, Ground Based Mid-Course Defense. Briefing.

PrelimDesi_January_10_03 IVV Overview1. 10 Jan. 2003.

National Aeronautics and Space Administration (1985). The Cost Effectiveness

of Software Independent Verification and Validation (NASA RTOP #323-51-
72). Pasadena, CA: Jet Propulsion Laboratory.

National Aeronautics and Space Administration (2001). NASA Policy Directive

8730.4. 3 Dec. 2006
<http://www.hq.nasa.gov/office/codeq/doctree/87304.htm>.

Persons, Warren L., and Lawrence, J. Dennis. “Class 1E Software Verification

and Validation: Past, Present, and Future” (Technical Report UCRL-JC-
114806). 21st Water Reactor Safety Information Meeting (1993). Bethesda,
MD, 25-27 Oct. 1993. 22 Oct. 2006
<http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10128966>.

“Rational ROSE XDE Developer Plus.” IBM.com. 2006. 10 Jun. 2006

<http://www-306.ibm.com/software/awdtools/developer/plus/features/>.

Reiss, Steven P. A Practical Introduction to Software Design with C++. New

York: John Wiley & Sons, 1998. 17 Oct. 2006
<http://cs.brown.edu/courses/cs190/2006/reiss/chap15.pdf>.

90

Robat, Cornelis. “Introduction to Software History.” The History of Computing
Project. 17 Oct. 2006
<http://www.thocp.net/software/software_reference/introduction_to_software
_history.htm>.

Rogers, Richard A.Dr., Dan McCaugherty, and Dr. Fred Martin. Case Study

Briefing. A Case Study of IV&V Return on Investment (ROI). Titan Systems
Corporation. 2001. 3 Dec. 2006
<http://www.dtic.mil/ndia/systems/Rogers2.pdf>.

Rombach, Dieter. Lecture. Software Engineering I (WS 03/04). Technische

Universität Kaiserslautern Fachbereich Informatik AG Software Engineering.
Kaiserslautern, Germany, 27 Oct. 2003. 17 Oct. 2006
<http://www.agse.informatik.uni-
kl.de/teaching/se1/ws2003/notes/Chapter1.pdf>.

Rosenberg, Linda. Briefing. IV&V at NASA. Software Engineering Workshop.

30 Nov. 2000. 16 Nov. 2006
<http://sel.gsfc.nasa.gov/website/sew/2000/topics/CharlieVanek_Slides.PD
F>.

Shridhar, Surbhi. “V&V – Verity and Value.” Cybermedia India Online Limited.

13 Apr. 2004. 22 Oct. 2006
<http://www.ciol.com/content/search/showarticle1.asp?artid=56358>.

Shula, Shilpa V., and David F. Redmiles. “Collaborative Learning in a Software

Bug-Tracking Scenario.” Irvine, CA: University of California, Irvine, 16 Oct.
1996. 22 Sep. 2006 <http://www.ics.uci.edu/~redmiles/publications/C018-
SR96.pdf>.

Slabodkin, Gregory. “Software Glitches Leave Navy Smart Ship Dead in the

Water.” Government Computer News. 13 Jul. 1998. 16 Nov. 2006
<http://www.gcn.com/print/17_17/33727-1.html>.

Spector, David H. M. “Case Tools.” The O’Reilly Network. 1 Aug. 2002. 3 Dec.

2006 <http://www.zeitgeist.com/Articles/CaseTools.pdf>.

“Telelogic DOORS.” AmericasNetwork.com. 2006. 16 Sep. 2006

<http://whitepapers.americasnetwork.com/detail/PROD/1108021988_307.ht
ml>.

Tran, Eushiuan. “Verification/Validation/Certification.” Topics in Dependable

Embedded Systems. 1989. Carnegie Mellon University. 17 Oct. 2006
<http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html>.

91

U.S. Army, Research, Development, and Engineering Command (RDECOM),
Aviation and Missile Research, Development and Engineering Center
(AMRDEC), Software Engineering Directorate (SED). Briefing. TTEC
Tailored SIVV Strategy Updated Final. Redstone Arsenal, AL, 5 May 2003.

Walters, Dan F. “Writing an Effective IV&V Plan.” CrossTalk The Journal of

Defense Software Engineering. Nov. 2000. 19 Nov. 2006
<http://www.stsc.hill.af.mil/CrossTalk/2000/11/walters.html>.

Womack, James P., Daniel T. Jones, and Daniel Roos. The Machine that

Changed the World. New York, NY: Harper Collins, 1991.

Zambrana, Michael and Dennis Singer. Space and Missile Systems Center

(SMC) Software Acquisition Handbook Version 1.0. U.S. Air Force, 9 Feb.
2004. 3 Dec. 2006 <http://ax.losangeles.af.mil/axl/sacqhdbk.pdf>.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Defense Logistics Studies Information Center

U.S. Army Logistics Management Center
Fort Lee, Virginia

4. OASA (RDA)

ATTN: SARD-ZAC
Washington, DC

5. Professor Brad Naegle..

Naval Post Graduate School
Monterey, California

6. Dr. Bill Craig

Software Engineering Directorate (SED)
AMSRD-AMR-BA
Redstone Arsenal, Alabama

7. William A. Mathis
Huntsville, Alabama

8. Alexis P. von Spakovsky

Huntsville, Alabama

9. David PattersonCommander:

Redstone Arsenal ATTN: David L. Patterson
BLDG 5250 SFAE-MSLS-PF-LD-SD-FS
Redstone Arsenal, Alabama

10. Reffela Davidson

Huntsville, Alabama

